A267316 Decimal expansion of the Dirichlet eta function at 5.
9, 7, 2, 1, 1, 9, 7, 7, 0, 4, 4, 6, 9, 0, 9, 3, 0, 5, 9, 3, 5, 6, 5, 5, 1, 4, 3, 5, 5, 3, 4, 6, 9, 5, 3, 2, 5, 5, 3, 5, 1, 3, 3, 6, 2, 0, 3, 3, 0, 4, 3, 2, 6, 1, 2, 2, 5, 8, 0, 5, 6, 3, 5, 5, 3, 4, 8, 1, 5, 8, 6, 5, 4, 2, 4, 6, 3, 8, 8, 9, 1, 7, 7, 5, 0, 4, 0, 4, 1, 2, 3, 9, 7, 3, 1, 2, 5, 0, 2, 8, 5, 5, 8, 9, 4, 0, 7, 0, 1, 2, 4, 8, 9, 6, 8, 2, 0, 9, 7, 7
Offset: 0
Examples
1/1^5 - 1/2^5 + 1/3^5 - 1/4^5 + 1/5^5 - 1/6^5 + ... = 0.972119770446909305935655143553469532553513362...
Links
- OEIS Wiki, Euler's alternating zeta function
- Eric Weisstein's World of Mathematics, Dirichlet Eta Function
- Wikipedia, Dirichlet Eta Function
Crossrefs
Programs
-
Mathematica
RealDigits[(15 Zeta[5])/16, 10, 120][[1]]
-
PARI
15*zeta(5)/16 \\ Michel Marcus, Feb 01 2016
-
Sage
s = RLF(0); s RealField(110)(s) for i in range(1, 10000): s += -((-1)^i/((i)^5)) print(s) # Terry D. Grant, Aug 05 2016
Formula
Equals Sum_{k > 0} (-1)^(k+1)/k^5 = (15*zeta(5))/16.