A267479 Number A(n,k) of words on {1,1,2,2,...,n,n} with longest increasing subsequence of length <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 6, 1, 0, 1, 1, 6, 43, 1, 0, 1, 1, 6, 90, 352, 1, 0, 1, 1, 6, 90, 1879, 3114, 1, 0, 1, 1, 6, 90, 2520, 47024, 29004, 1, 0, 1, 1, 6, 90, 2520, 102011, 1331664, 280221, 1, 0, 1, 1, 6, 90, 2520, 113400, 5176504, 41250519, 2782476, 1, 0
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 1, 1, 1, 1, 1, ... 0, 1, 6, 6, 6, 6, 6, ... 0, 1, 43, 90, 90, 90, 90, ... 0, 1, 352, 1879, 2520, 2520, 2520, ... 0, 1, 3114, 47024, 102011, 113400, 113400, ... 0, 1, 29004, 1331664, 5176504, 7235651, 7484400, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..30, flattened
- Ferenc Balogh, A generalization of Gessel's generating function to enumerate words with double or triple occurrences in each letter and without increasing subsequences of a given length, arXiv:1505.01389, 2015
- Shalosh B. Ekhad and Doron Zeilberger, The Generating Functions Enumerating 12..d-Avoiding Words with r occurrences of each of 1,2, ..., n are D-finite for all d and all r, 2014
Crossrefs
Formula
A(n,k) = Sum_{i=0..k} A267480(n,i).