A000680
a(n) = (2n)!/2^n.
Original entry on oeis.org
1, 1, 6, 90, 2520, 113400, 7484400, 681080400, 81729648000, 12504636144000, 2375880867360000, 548828480360160000, 151476660579404160000, 49229914688306352000000, 18608907752179801056000000, 8094874872198213459360000000, 4015057936610313875842560000000
Offset: 0
For n = 2, a(2) = 6 since there are 6 functions f:[4]->[2] with size 2 preimages for both {1} and {2}. In this case, there are binomial(4, 2) = 6 ways to choose the 2 elements of [4] f maps to {1} and the 2 elements of [4] that f maps to {2}. - _Dennis P. Walsh_, Nov 17 2009
- G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1998.
- H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 283.
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 112.
- Shanzhen Gao and Kenneth Matheis, Closed formulas and integer sequences arising from the enumeration of (0,1)-matrices with row sum two and some constant column sums. In Proceedings of the Forty-First Southeastern International Conference on Combinatorics, Graph Theory and Computing. Congr. Numer. 202 (2010), 45-53.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- C. B. Tompkins, Methods of successive restrictions in computational problems involving discrete variables. 1963, Proc. Sympos. Appl. Math., Vol. XV pp. 95-106; Amer. Math. Soc., Providence, R.I.
- T. D. Noe, Table of n, a(n) for n = 0..100
- Daniel Dockery, Polygorials, Special "Factorials" of Polygonal Numbers, preprint, 2003.
- R. Florez and L. Junes, A relation between triangular numbers and prime numbers, Integers 12(1) (2012), 83-96.
- M. Ghebleh, Antichains of (0, 1)-matrices through inversions, Linear Algebra and its Applications 458 (2014), 503-511.
- S. A. Joffe, Calculation of the first thirty-two Eulerian numbers from central differences of zero, Quart. J. Pure Appl. Math. 47 (1914), 103-126. [Accessible only in the USA through the Hathi Trust Digital Library.]
- Peter D. Loly and Ian D. Cameron, Frierson's 1907 Parameterization of Compound Magic Squares Extended to Orders 3^L, L = 1, 2, 3, ..., with Information Entropy, arXiv:2008.11020 [math.HO], 2020.
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
- Robert A. Proctor, Let's Expand Rota's Twelvefold Way For Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
- Dennis Walsh, Counting integer functions with size-2 preimage constraints, preprint.
- Eric Weisstein's World of Mathematics, Lattice Path.
- Index to divisibility sequences
- Index entries for related partition-counting sequences
A diagonal of the triangle in
A241171.
Even bisection of column k=0 of
A097591.
-
A000680 := n->(2*n)!/(2^n);
a[0]:=1:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]*(2*n-1)*n od: seq(a[n], n=0..16); # Zerinvary Lajos, Mar 08 2008
seq(product(binomial(2*n-2*k,2),k=0..n-1),n=0..16); # Dennis P. Walsh, Nov 17 2009
-
Table[Product[Binomial[2 i, 2], {i, 1, n}], {n, 0, 16}]
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[ polygorial[6, #] &, 17, 0] (* Robert G. Wilson v, Dec 26 2016 *)
Table[(2n)!/2^n,{n,0,20}] (* Harvey P. Dale, Sep 21 2020 *)
-
a(n) = (2*n)! / 2^n
A214015
Number of permutations A(n,k) in S_n with longest increasing subsequence of length <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 5, 1, 0, 1, 1, 2, 6, 14, 1, 0, 1, 1, 2, 6, 23, 42, 1, 0, 1, 1, 2, 6, 24, 103, 132, 1, 0, 1, 1, 2, 6, 24, 119, 513, 429, 1, 0, 1, 1, 2, 6, 24, 120, 694, 2761, 1430, 1, 0, 1, 1, 2, 6, 24, 120, 719, 4582, 15767, 4862, 1, 0
Offset: 0
A(4,2) = 14 because 14 permutations of {1,2,3,4} do not contain an increasing subsequence of length > 2: 1432, 2143, 2413, 2431, 3142, 3214, 3241, 3412, 3421, 4132, 4213, 4231, 4312, 4321. Permutation 1423 is not counted because it contains the noncontiguous increasing subsequence 123.
A(4,2) = 14 = 2^2 + 3^2 + 1^2 because the partitions of 4 with <= 2 parts are [2,2], [3,1], [4] with 2, 3, 1 standard Young tableaux, respectively:
+------+ +------+ +---------+ +---------+ +---------+ +------------+
| 1 3 | | 1 2 | | 1 3 4 | | 1 2 4 | | 1 2 3 | | 1 2 3 4 |
| 2 4 | | 3 4 | | 2 .-----+ | 3 .-----+ | 4 .-----+ +------------+
+------+ +------+ +---+ +---+ +---+
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, ...
0, 1, 5, 6, 6, 6, 6, 6, ...
0, 1, 14, 23, 24, 24, 24, 24, ...
0, 1, 42, 103, 119, 120, 120, 120, ...
0, 1, 132, 513, 694, 719, 720, 720, ...
0, 1, 429, 2761, 4582, 5003, 5039, 5040, ...
Columns k=0-10 give:
A000007,
A000012,
A000108,
A005802,
A047889,
A047890,
A052399,
A072131,
A072132,
A072133,
A072167.
A(2n,n-1) gives
A269042(n) for n>0.
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0,
add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
A:= (n, k)-> `if`(k>=n, n!, g(n, k, [])):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]! / Product[Product[1+l[[i]]-j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]]^2, If[i < 1, 0, Sum[g[n - i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]];
A[n_, k_] := If[k >= n, n!, g[n, k, {}]];
Table [Table [A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *)
A220097
Number of words on {1,1,2,2,3,3,...,n,n} avoiding the pattern 123.
Original entry on oeis.org
1, 1, 6, 43, 352, 3114, 29004, 280221, 2782476, 28221784, 291138856, 3045298326, 32222872906, 344293297768, 3709496350512, 40256666304723, 439645950112788, 4828214610825948, 53286643424088024, 590705976259292856, 6574347641664629388, 73433973722458186608
Offset: 0
For n=2, the a(2)=6 words are 1122, 1212, 1221, 2112, 2121, 2211. For n=3, 213312 would be counted because it has no increasing subsequence of length 3, but 113223 would not be counted because it does have such an increasing subsequence.
For n=2, the a(2)=6 ordered set partitions are 12/34, 13/24, 14/23, 34/12, 24/13, 23/14. For n=3, 46/23/15 would be counted because there is no way to choose i from the first block, j from the second block, and k from the third block such that i<j<k, but 13/25/46 would not be counted because we may select 1, 2, and 4 as a 123 pattern.
- Alois P. Heinz, Table of n, a(n) for n = 0..931 (terms n=1..25 from Lara Pudwell)
- Ferenc Balogh, A generalization of Gessel's generating function to enumerate words with double or triple occurrences in each letter and without increasing subsequences of a given length, preprint arXiv:1505.01389 [math.CO], 2015.
- W. Y. C. Chen, A. Y. L. Dai and R. D. P. Zhou, Ordered Partitions Avoiding a Permutation of Length 3, arXiv preprint arXiv:1304.3187 [math.CO], 2013.
- Anant Godbole, Adam Goyt, Jennifer Herdan, and Lara Pudwell, Pattern Avoidance in Ordered Set Partitions, arXiv preprint arXiv:1212.2530 [math.CO], 2012.
- Robert A. Proctor, Matthew J. Willis, Convexity of tableau sets for type A Demazure characters (key polynomials), parabolic Catalan numbers, arXiv preprint arXiv:1706.03094 [math.CO], 2017.
- Robert A. Proctor, Matthew J. Willis, Parabolic Catalan numbers count flagged Schur functions and their appearances as type A Demazure characters (key polynomials), arXiv:1706.04649 [math.CO], 2017.
- Lara Pudwell, Enumeration schemes for words avoiding permutations, in Permutation Patterns (2010), S. Linton, N. Ruskuc, and V. Vatter, Eds., vol. 376 of London Mathematical Society Lecture Note Series, Cambridge University Press, pp. 193-211. Cambridge: Cambridge University Press.
- Nathaniel Shar, Experimental methods in permutation patterns and bijective proof, PhD Dissertation, Mathematics Department, Rutgers University, May 2016.
- N. Shar, D. Zeilberger, The (Ordinary) Generating Functions Enumerating 123-Avoiding Words with r Occurrences of Each of 1, 2,..., n are Always Algebraic, arXiv preprint arXiv:1411.5052 [math.CO], 2014.
-
Rest@ CoefficientList[Series[Sqrt[2/(1 + 2 x + Sqrt[1 - 12 x])], {x, 0, 20}], x] (* Michael De Vlieger, Oct 05 2016 *)
Table[Sum[(-1)^(n+k) Binomial[n,k]CatalanNumber[n+k], {k,0,n}], {n,1,20}] (* Peter Luschny, Aug 15 2017 *)
A266734
Number of words on {1,1,2,2,3,3,...,n,n} avoiding the pattern 1234.
Original entry on oeis.org
1, 1, 6, 90, 1879, 47024, 1331664, 41250519, 1367533365, 47808569835, 1744233181074, 65905305836049, 2564220925607625, 102277575120518170, 4167486279986250932, 172988069360147449566, 7298137818882637998561, 312349784398279829229533, 13539988681466075755541070
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..580
- Ferenc Balogh, A generalization of Gessel's generating function to enumerate words with double or triple occurrences in each letter and without increasing subsequences of a given length, preprint arXiv:1505.01389, 2015.
- Shalosh B. Ekhad and Doron Zeilberger, The Generating Functions Enumerating 12..d-Avoiding Words with r occurrences of each of 1,2, ..., n are D-finite for all d and all r, 2014; Local copy, pdf file only, no active links
A266735
Number of words on {1,1,2,2,3,3,...,n,n} avoiding the pattern 12345.
Original entry on oeis.org
1, 1, 6, 90, 2520, 102011, 5176504, 307027744, 20472135280, 1496594831506, 117857270562568, 9869468603141427, 870255083860881152, 80185525536941657225, 7673807618627318341436, 759049283017632212000140, 77292554293281131959377376, 8075621155990277422800518076
Offset: 0
A267480
Number T(n,k) of words on {1,1,2,2,...,n,n} with longest increasing subsequence of length k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 5, 0, 1, 42, 47, 0, 1, 351, 1527, 641, 0, 1, 3113, 43910, 54987, 11389, 0, 1, 29003, 1302660, 3844840, 2059147, 248749, 0, 1, 280220, 40970298, 265777225, 285588543, 82025038, 6439075, 0, 1, 2782475, 1364750889, 19104601915, 37783672691, 19773928713, 3507289363, 192621953
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 5;
0, 1, 42, 47;
0, 1, 351, 1527, 641;
0, 1, 3113, 43910, 54987, 11389;
0, 1, 29003, 1302660, 3844840, 2059147, 248749;
0, 1, 280220, 40970298, 265777225, 285588543, 82025038, 6439075;
- Alois P. Heinz, Rows n = 0..18, flattened
- Ferenc Balogh, A generalization of Gessel's generating function to enumerate words with double or triple occurrences in each letter and without increasing subsequences of a given length, arXiv:1505.01389, 2015
- Shalosh B. Ekhad and Doron Zeilberger, The Generating Functions Enumerating 12..d-Avoiding Words with r occurrences of each of 1,2, ..., n are D-finite for all d and all r, 2014
A267532
Number of words on {1,1,2,2,...,n,n} with longest increasing subsequence of length < n.
Original entry on oeis.org
0, 0, 1, 43, 1879, 102011, 7235651, 674641325, 81537026047, 12498099730471, 2375632826877259, 548818073236649129, 151476182218777630655, 49229890784448694885163, 18608906461974462064310179, 8094874797394331233877338741, 4015057931973886657462193434111
Offset: 0
a(2) = 1: 2211.
a(3) = 43: 113322, 131322, 133122, 133212, 133221, 211332, 213132, 213312, 213321, 221133, 221313, 221331, 223113, 223131, 223311, 231132, 231312, 231321, 232113, 232131, 232311, 233112, 233121, 233211, 311322, 313122, 313212, 313221, 321132, 321312, 321321, 322113, 322131, 322311, 323112, 323121, 323211, 331122, 331212, 331221, 332112, 332121, 332211.
-
b:= proc(n) option remember; `if`(n<3, [1$2, 5][n+1], (
(n^3+n^2-7*n+4)*b(n-1)-2*(2*n-3)*(n-1)^3*b(n-2))/(n-2))
end:
a:= n-> (2*n)!/(2^n)-b(n):
seq(a(n), n=0..20);
Showing 1-7 of 7 results.
Comments