cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A220097 Number of words on {1,1,2,2,3,3,...,n,n} avoiding the pattern 123.

Original entry on oeis.org

1, 1, 6, 43, 352, 3114, 29004, 280221, 2782476, 28221784, 291138856, 3045298326, 32222872906, 344293297768, 3709496350512, 40256666304723, 439645950112788, 4828214610825948, 53286643424088024, 590705976259292856, 6574347641664629388, 73433973722458186608
Offset: 0

Views

Author

Lara Pudwell, Dec 04 2012

Keywords

Comments

a(n) is the number of 123-avoiding ordered set partitions of {1,...,2n} where all blocks are of size 2.

Examples

			For n=2, the a(2)=6 words are 1122, 1212, 1221, 2112, 2121, 2211.  For n=3, 213312 would be counted because it has no increasing subsequence of length 3, but 113223 would not be counted because it does have such an increasing subsequence.
For n=2, the a(2)=6 ordered set partitions are 12/34, 13/24, 14/23, 34/12, 24/13, 23/14.  For n=3, 46/23/15 would be counted because there is no way to choose i from the first block, j from the second block, and k from the third block such that i<j<k, but 13/25/46 would not be counted because we may select 1, 2, and 4 as a 123 pattern.
		

Crossrefs

Column k=2 of A267479.
Row sums of A288558.

Programs

  • Mathematica
    Rest@ CoefficientList[Series[Sqrt[2/(1 + 2 x + Sqrt[1 - 12 x])], {x, 0, 20}], x] (* Michael De Vlieger, Oct 05 2016 *)
    Table[Sum[(-1)^(n+k) Binomial[n,k]CatalanNumber[n+k], {k,0,n}], {n,1,20}] (* Peter Luschny, Aug 15 2017 *)

Formula

a(n) ~ 12^n/(sqrt(Pi)*(7*n/3)^(3/2)). - Vaclav Kotesovec, May 22 2013
G.f. = sqrt( 2/(1+2*x+sqrt(1-12*x))) [Chen et al.] - N. J. A. Sloane, Jun 09 2013
Conjecture: a(n) = (2/Pi)*Integral_{t=0..1} sqrt((1 - t)/t)*(16*t^2 - 4*t)^n = Catalan(2*n)*2F1(-1-2*n,-n;1/2-2*n;1/4). - Benedict W. J. Irwin, Oct 05 2016
a(n) = Sum_{k=0..n} (-1)^(n+k)*binomial(n,k)*Catalan(n+k). - Peter Luschny, Aug 15 2017
D-finite with recurrence: 4*n*(2*n+1)*a(n) +2*(-53*n^2+63*n-16)*a(n-1) +9*(13*n^2-59*n+62)*a(n-2) +18*(n-2)*(2*n-5)*a(n-3)=0. - R. J. Mathar, Feb 21 2020

Extensions

a(0)=1 prepended by Alois P. Heinz, Nov 15 2019

A266735 Number of words on {1,1,2,2,3,3,...,n,n} avoiding the pattern 12345.

Original entry on oeis.org

1, 1, 6, 90, 2520, 102011, 5176504, 307027744, 20472135280, 1496594831506, 117857270562568, 9869468603141427, 870255083860881152, 80185525536941657225, 7673807618627318341436, 759049283017632212000140, 77292554293281131959377376, 8075621155990277422800518076
Offset: 0

Views

Author

N. J. A. Sloane, Jan 06 2016

Keywords

Crossrefs

Column k=4 of A267479.

Extensions

More terms from Alois P. Heinz, Jan 14 2016

A267479 Number A(n,k) of words on {1,1,2,2,...,n,n} with longest increasing subsequence of length <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 6, 1, 0, 1, 1, 6, 43, 1, 0, 1, 1, 6, 90, 352, 1, 0, 1, 1, 6, 90, 1879, 3114, 1, 0, 1, 1, 6, 90, 2520, 47024, 29004, 1, 0, 1, 1, 6, 90, 2520, 102011, 1331664, 280221, 1, 0, 1, 1, 6, 90, 2520, 113400, 5176504, 41250519, 2782476, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Jan 15 2016

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,     1,       1,       1,       1,       1, ...
  0, 1,     1,       1,       1,       1,       1, ...
  0, 1,     6,       6,       6,       6,       6, ...
  0, 1,    43,      90,      90,      90,      90, ...
  0, 1,   352,    1879,    2520,    2520,    2520, ...
  0, 1,  3114,   47024,  102011,  113400,  113400, ...
  0, 1, 29004, 1331664, 5176504, 7235651, 7484400, ...
		

Crossrefs

Columns k=0-4 give: A000007, A000012, A220097, A266734, A266735.
Main diagonal gives A000680.
First lower diagonal gives A267532.

Formula

A(n,k) = Sum_{i=0..k} A267480(n,i).

A266741 Number of words on {1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,...,n,n,n,n} avoiding the pattern 12345.

Original entry on oeis.org

1, 1, 70, 34650, 63063000, 142951955371, 389426248416626, 1238402046254860022, 4454056622413300252928, 17668055644599543583018570, 75867559322054514745288107364, 347785237467609520037269752908904, 1684035818793607129226446293560872032
Offset: 0

Views

Author

N. J. A. Sloane, Jan 06 2016

Keywords

Crossrefs

Extensions

More terms from Alois P. Heinz, Jan 14 2016

A266737 Number of words on {1,1,1,2,2,2,3,3,3,4,4,4,...,n,n,n} avoiding the pattern 1234.

Original entry on oeis.org

1, 1, 20, 1680, 173891, 21347262, 2977892253, 455912368540, 74876841353159, 12990339123973119, 2354973430941967605, 442587722191655715108, 85717352536181708342445, 17029266882947116165470103, 3457866959157770598680361537, 715559803849259851987691458500
Offset: 0

Views

Author

N. J. A. Sloane, Jan 06 2016

Keywords

Crossrefs

Extensions

More terms from Alois P. Heinz, Jan 14 2016

A266736 Number of words on {1,1,1,2,2,2,3,3,3,4,4,4,...,n,n,n} avoiding the pattern 123.

Original entry on oeis.org

1, 1, 20, 374, 8124, 190893, 4727788, 121543500, 3212914524, 86782926068, 2384725558736, 66456350375566, 1873703883228900, 53351152389518550, 1531960347453263112, 44311785923563130392, 1289909841595078198172, 37760636720455988917420, 1110927659386926734186992
Offset: 0

Views

Author

N. J. A. Sloane, Jan 06 2016

Keywords

Crossrefs

Formula

Conjecture: a(n) = (2/Pi)*Integral_{t=0..1} sqrt((1 - t)/t)*(64*t^3 - 32*t^2)^n = Catalan(3*n)*2F1(-1-3*n,-n;1/2-3*n;1/2). - Benedict W. J. Irwin, Oct 05 2016

Extensions

More terms from Alois P. Heinz, Jan 14 2016

A266740 Number of words on {1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,...,n,n,n,n} avoiding the pattern 1234.

Original entry on oeis.org

1, 1, 70, 34650, 16140983, 8854463421, 5532980565456, 3798011394008444, 2798461806432513085, 2179251644112128926809, 1774029308605731224234922, 1497612094060753803137726582, 1303178757814574200714348639251, 1163471249071555286949793002571005
Offset: 0

Views

Author

N. J. A. Sloane, Jan 06 2016

Keywords

Crossrefs

Extensions

More terms from Alois P. Heinz, Jan 14 2016

A266738 Number of words on {1,1,1,2,2,2,3,3,3,4,4,4,...,n,n,n} avoiding the pattern 12345.

Original entry on oeis.org

1, 1, 20, 1680, 369600, 117392909, 46121962742, 21198300356500, 11003612776114008, 6290031043253973544, 3887357166155963541538, 2562077915376091538040250, 1782153151031487742187453640, 1297781266782084301101836538690, 983066960483171632842827775906144
Offset: 0

Views

Author

N. J. A. Sloane, Jan 06 2016

Keywords

Crossrefs

Extensions

More terms from Alois P. Heinz, Jan 14 2016

A266739 Number of words on {1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,...,n,n,n,n} avoiding the pattern 123.

Original entry on oeis.org

1, 1, 70, 3199, 173860, 10203181, 631326526, 40553993125, 2678871322640, 180830423671450, 12418980645870820, 864996624914197495, 60957211831578399100, 4338372535640598835279, 311386494956413595138930, 22513820432313175983170649, 1638226907374445245497453464
Offset: 0

Views

Author

N. J. A. Sloane, Jan 06 2016

Keywords

Crossrefs

Extensions

More terms from Alois P. Heinz, Jan 14 2016
Showing 1-9 of 9 results.