2, 3, 3, 5, 7, 5, 2, 11, 13, 7, 3, 7, 19, 19, 11, 3, 5, 11, 29, 31, 13, 2, 13, 11, 23, 31, 37, 17, 5, 13, 17, 23, 29, 41, 43, 19, 2, 7, 17, 23, 31, 37, 59, 61, 23, 5, 3, 11, 19, 29, 37, 43, 61, 67, 29, 2, 7, 13, 17, 43, 43, 47, 53, 71, 73, 31, 3, 5, 13, 23, 19, 47, 53, 53, 67, 79, 79, 37
Offset: 1
Note that the cross-references are hints, not assertions about identity.
.
[ n] [ p]
[ 1] [ 2] [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ... A000040
[ 2] [ 3] [ 3, 7, 13, 19, 31, 37, 43, 61, 67, 73, ... A007645
[ 3] [ 5] [ 5, 11, 19, 29, 31, 41, 59, 61, 71, 79, ... A038872
[ 4] [ 7] [ 2, 7, 11, 23, 29, 37, 43, 53, 67, 71, ... A045373
[ 5] [11] [ 3, 5, 11, 23, 31, 37, 47, 53, 59, 67, ... A056874
[ 6] [13] [ 3, 13, 17, 23, 29, 43, 53, 61, 79, 101, .. A038883
[ 7] [17] [ 2, 13, 17, 19, 43, 47, 53, 59, 67, 83, ... A038889
[ 8] [19] [ 5, 7, 11, 17, 19, 23, 43, 47, 61, 73, ... A106863
[ 9] [23] [ 2, 3, 13, 23, 29, 31, 41, 47, 59, 71, ... A296932
[10] [29] [ 5, 7, 13, 23, 29, 53, 59, 67, 71, 83, ... A038901
[11] [31] [ 2, 5, 7, 19, 31, 41, 47, 59, 67, 71, ... A267481
[12] [37] [ 3, 7, 11, 37, 41, 47, 53, 67, 71, 73, ... A038913
[13] [41] [ 2, 5, 23, 31, 37, 41, 43, 59, 61, 73, ... A038919
[14] [43] [11, 13, 17, 23, 31, 41, 43, 47, 53, 59, ... A106891
[15] [47] [ 2, 3, 7, 17, 37, 47, 53, 59, 61, 71, ... A267601
[16] [53] [ 7, 11, 13, 17, 29, 37, 43, 47, 53, 59, ... A038901
[17] [59] [ 3, 5, 7, 17, 19, 29, 41, 53, 59, 71, ... A374156
[18] [61] [ 3, 5, 13, 19, 41, 47, 61, 73, 83, 97, ... A038941
[19] [67] [17, 19, 23, 29, 37, 47, 59, 67, 71, 73, ... A106933
[20] [71] [ 2, 3, 5, 19, 29, 37, 43, 71, 73, 79, ...
[21] [73] [ 2, 3, 19, 23, 37, 41, 61, 67, 71, 73, ... A038957
[22] [79] [ 2, 5, 11, 13, 19, 23, 31, 67, 73, 79, ...
[23] [83] [ 3, 7, 11, 17, 23, 29, 31, 37, 41, 59, ...
[24] [89] [ 2, 5, 11, 17, 47, 53, 67, 71, 73, 79, ... A038977
[25] [97] [ 2, 3, 11, 31, 43, 47, 53, 61, 73, 79, ... A038987
.
Prime(n) is a term of row n because for all n >= 1, n is a quadratic residue mod n.
Comments