A267490 Primes whose base-8 representation is a perfect square in base 10.
149, 241, 661, 1409, 2593, 3733, 6257, 7793, 15313, 23189, 25601, 26113, 30497, 34337, 44053, 49057, 78577, 92821, 95009, 108529, 115861, 132757, 162257, 178417, 183377, 223381, 235541, 242197, 266261, 327317, 345749, 426389, 525461, 693397, 719893, 729713, 805397, 814081, 903841
Offset: 1
Examples
a(1) = 149 because 149 is 225 in base 8, and 225 is 15^2 in base 10.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
[n:n in PrimesUpTo(1000000)| IsSquare(Seqint(Intseq(n,8)))]; // Marius A. Burtea, Jun 30 2019
-
Mathematica
Select[Prime@ Range[10^5], IntegerQ@ Sqrt@ FromDigits@ IntegerDigits[#, 8] &] (* Michael De Vlieger, Jan 16 2016 *)
-
PARI
listp(nn) = {forprime(p=1, nn, d = digits(p, 8); pd = Pol(d); if (issquare(subst(pd, x, 10)), print1(p, ", ")););} \\ Michel Marcus, Jan 16 2016
-
PARI
is(n,b=8,c=10)={issquare(subst(Pol(digits(n,b)),x,c))&&isprime(n)} \\ M. F. Hasler, Jan 20 2016
-
Python
from sympy import isprime A267490_list = [int(s,8) for s in (str(i**2) for i in range(10**6)) if max(s) < '8' and isprime(int(s,8))] # Chai Wah Wu, Jan 20 2016
Comments