cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267652 a(n) = 4*a(n - 1) + 4*a(n - 2) for n>1, a(0)=2, a(1)=3.

Original entry on oeis.org

2, 3, 20, 92, 448, 2160, 10432, 50368, 243200, 1174272, 5669888, 27376640, 132186112, 638251008, 3081748480, 14879997952, 71846985728, 346907934720, 1675019681792, 8087710466048, 39050920591360, 188554524229632, 910421779283968, 4395905214054400, 21225307973353472, 102484852749631488
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 19 2016

Keywords

Comments

Generalized Fibonacci sequence.

Crossrefs

Programs

  • Mathematica
    Table[2^(n - 5/2) ((1 + 4 Sqrt[2]) (1 - Sqrt[2])^n - (1 - 4 Sqrt[2]) (1 + Sqrt[2])^n), {n, 0, 25}]
    RecurrenceTable[{a[0] == 2, a[1] == 3, a[n] == 4 a[n - 1] + 4 a[n - 2]}, a, {n, 25}] (* Bruno Berselli, Jan 19 2016 *)
    LinearRecurrence[{4, 4}, {2, 3}, 20] (* Vincenzo Librandi, Jan 19 2016 *)
  • PARI
    Vec((2-5*x)/(1-4*x-4*x^2) + O(x^100)) \\ Altug Alkan, Jan 19 2016

Formula

G.f.: (2 - 5*x)/(1 - 4*x - 4*x^2).
a(n) = 2^(n-5/2)*((1+4*sqrt(2))*(1-sqrt(2))^n - (1-4*sqrt(2))*(1+sqrt(2))^n).
Lim_{n -> infinity} a(n)/a(n - 1) = 2 + 2*sqrt(2) = 2*A014176 = 4.82842712...
a(n) = 2*A057087(n)-5*A057087(n-1). - R. J. Mathar, Jun 07 2016