cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267747 Numbers k such that k mod 2 = k mod 3 = k mod 5.

Original entry on oeis.org

0, 1, 30, 31, 60, 61, 90, 91, 120, 121, 150, 151, 180, 181, 210, 211, 240, 241, 270, 271, 300, 301, 330, 331, 360, 361, 390, 391, 420, 421, 450, 451, 480, 481, 510, 511, 540, 541, 570, 571, 600, 601, 630, 631, 660, 661, 690, 691, 720, 721, 750, 751, 780, 781, 810, 811, 840
Offset: 1

Views

Author

Mikk Heidemaa, Jan 20 2016

Keywords

Comments

Numbers k such that k == 0 or 1 (mod 30). - Robert Israel, Jan 20 2016

Crossrefs

Cf. A267711.

Programs

  • Magma
    [15*n-7*(-1)^n-22: n in [1..60]]; // Vincenzo Librandi, Jan 21 2016
  • Mathematica
    Table[15*n - 7*(-1)^n - 22, {n, 1000}] (* Or *)
    Select[ Range[0, 20000], (Mod[#, 2]==Mod[#, 3]==Mod[#, 5]) &]
    LinearRecurrence[{1,1,-1},{0,1,30},60] (* Harvey P. Dale, Nov 15 2021 *)
  • PARI
    concat(0, Vec(x^2*(29*x+1)/((x-1)^2*(x+1)) + O(x^60))) \\ Colin Barker, Jan 21 2016
    

Formula

a(n) = 15*n - 7*(-1)^n - 22.
G.f.: x^2*(29*x+1)/((x-1)^2*(x+1)).