A267797 Lucas numbers of the form (x^3 + y^3) / 2 where x and y are distinct positive integers.
76, 1364, 24476, 439204, 7881196, 141422324, 2537720636, 45537549124, 817138163596, 14662949395604, 263115950957276, 4721424167835364, 84722519070079276, 1520283919093591604, 27280388024614569596, 489526700523968661124, 8784200221406821330636
Offset: 1
Examples
Lucas number 76 is a term because 76 = (3^3 + 5^3) / 2. Lucas number 1364 is a term because 1364 = (10^3 + 12^3) / 2. Lucas number 24476 is a term because 24476 = (28^3 + 30^3) / 2. Lucas number 439204 is a term because 439204 = (75^3 + 77^3) / 2. Lucas number 7881196 is a term because 7881196 = (198^3 + 200^3) / 2. Lucas number 141422324 is a term because 141422324 = (520^3 + 522^3) / 2.
Links
- Colin Barker, Table of n, a(n) for n = 1..750
- Index entries for linear recurrences with constant coefficients, signature (18,-1).
Programs
-
Magma
[Fibonacci(6*n+4)+Fibonacci(6*n+2): n in [1..20]]; // Vincenzo Librandi, Jan 24 2016
-
Mathematica
Table[Fibonacci[6 n + 4] + Fibonacci[6 n + 2], {n, 1, 20}] (* Vincenzo Librandi, Jan 24 2016 *) LinearRecurrence[{18,-1},{76,1364},20] (* Harvey P. Dale, Jul 23 2024 *)
-
PARI
l(n) = fibonacci(n+1) + fibonacci(n-1); is(n) = for(i=ceil(sqrtn(n\2+1, 3)), sqrtn(n-.5, 3), ispower(n-i^3, 3) && return(1)); for(n=1, 120, if(is(2*l(n)), print1(l(n), ", ")));
-
PARI
a(n) = ((5*fibonacci(n)*fibonacci(n+1) + 1 + (-1)^n)^3 + (5*fibonacci(n)*fibonacci(n+1) - 1 + (-1)^n)^3) / 2;
-
PARI
a(n) = (fibonacci(6*n+4) + fibonacci(6*n+2));
-
PARI
Vec(4*x*(19-x)/(1-18*x+x^2) + O(x^20)) \\ Colin Barker, Jan 24 2016
Comments