A267892 Numbers with 9 odd divisors.
225, 441, 450, 882, 900, 1089, 1225, 1521, 1764, 1800, 2178, 2450, 2601, 3025, 3042, 3249, 3528, 3600, 4225, 4356, 4761, 4900, 5202, 5929, 6050, 6084, 6498, 6561, 7056, 7200, 7225, 7569, 8281, 8450, 8649, 8712, 9025, 9522, 9800, 10404, 11858, 12100, 12168, 12321, 12996, 13122, 13225, 14112, 14161, 14400, 14450, 15129
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
GAP
A:=List([1..16000],n->DivisorsInt(n));; B:=List([1..Length(A)],i->Filtered(A[i],IsOddInt));; a:=Filtered([1..Length(B)],i->Length(B[i])=9); # Muniru A Asiru, Aug 14 2018
-
Maple
N:= 10^5: # to get all terms <= N P:= select(isprime, [seq(i,i=3..floor(sqrt(N)/2),2)]); Aodd:= select(`<=`,map(t -> t^8, P) union {seq(seq(P[i]^2*P[j]^2,i=1..j-1),j=1..nops(P))}, N): A:= map(t -> seq(2^j*t,j=0..ilog2(N/t)), Aodd): sort(convert(A,list)); # Robert Israel, Dec 29 2016
-
Mathematica
Select[Range[5^6], Length[Divisors@ # /. d_ /; EvenQ@ d -> Nothing] == 9 &] (* Michael De Vlieger, Apr 04 2016 *) Select[Range[16000],Total[Boole[OddQ[Divisors[#]]]]==9&] (* Harvey P. Dale, May 12 2019 *)
-
PARI
isok(n) = sumdiv(n, d, (d%2)) == 9; \\ after Michel Marcus.
Formula
A001227(a(n)) = 9.
Sum_{n>=1} 1/a(n) = (P(2)-1/4)^2 - P(4) + 2*P(8) + 7/128 = 0.026721189882055998428..., where P(s) is the prime zeta function. - Amiram Eldar, Sep 16 2024
Comments