cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A174344 List of x-coordinates of point moving in clockwise square spiral.

Original entry on oeis.org

0, 1, 1, 0, -1, -1, -1, 0, 1, 2, 2, 2, 2, 1, 0, -1, -2, -2, -2, -2, -2, -1, 0, 1, 2, 3, 3, 3, 3, 3, 3, 2, 1, 0, -1, -2, -3, -3, -3, -3, -3, -3, -3, -2, -1, 0, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 2, 1, 0, -1, -2, -3, -4, -4, -4, -4, -4, -4, -4, -4, -4, -3, -2
Offset: 1

Views

Author

Nikolas Garofil (nikolas(AT)garofil.be), Mar 16 2010

Keywords

Comments

Also, list of x-coordinates of point moving in counterclockwise square spiral.
This spiral, in either direction, is sometimes called the "Ulam spiral", but "square spiral" is a better name. (Ulam looked at the positions of the primes, but of course the spiral itself must be much older.) - N. J. A. Sloane, Jul 17 2018
Graham, Knuth and Patashnik give an exercise and answer on mapping n to square spiral x,y coordinates, and back x,y to n. They start 0 at the origin and first segment North so their y(n) is a(n+1). In their table of sides, it can be convenient to take n-4*k^2 so the ranges split at -m, 0, m. - Kevin Ryde, Sep 16 2019

Examples

			Here is the beginning of the clockwise square spiral. Sequence gives x-coordinate of the n-th point.
.
  20--21--22--23--24--25
   |                   |
  19   6---7---8---9  26
   |   |           |   |
  18   5   0---1  10  27
   |   |       |   |   |
  17   4---3---2  11  28
   |               |   |
  16--15--14--13--12  29
                       |
  35--34--33--32--32--30
.
Given the offset equal to 1, a(n) gives the x-coordinate of the point labeled n-1 in the above drawing. - _M. F. Hasler_, Nov 03 2019
		

References

  • Ronald L. Graham, Donald E. Knuth, Oren Patashnik, Concrete Mathematics, Addison-Wesley, 1989, chapter 3, Integer Functions, exercise 40 page 99 and answer page 498.

Crossrefs

Cf. A180714. A268038 (or A274923) gives sequence of y-coordinates.
The (x,y) coordinates for a point sweeping a quadrant by antidiagonals are (A025581, A002262). - N. J. A. Sloane, Jul 17 2018
See A296030 for the pairs (A174344(n), A274923(n)). - M. F. Hasler, Oct 20 2019
The diagonal rays are: A002939 (2*n*(2*n-1): 0, 2, 12, 30, ...), A016742 = (4n^2: 0, 4, 16, 36, ...), A002943 (2n(2n+1): 0, 6, 20, 42, ...), A033996 = (4n(n+1): 0, 8, 24, 48, ...). - M. F. Hasler, Oct 31 2019

Programs

  • Julia
    function SquareSpiral(len)
        x, y, i, j, N, n, c = 0, 0, 0, 0, 0, 0, 0
        for k in 0:len-1
            print("$x, ") # or print("$y, ") for A268038.
            if n == 0
                c += 1; c > 3 && (c =  0)
                c == 0 && (i = 0; j =  1)
                c == 1 && (i = 1; j =  0)
                c == 2 && (i = 0; j = -1)
                c == 3 && (i = -1; j = 0)
                c in [1, 3] && (N += 1)
                n = N
            end
            n -= 1
            x, y = x + i, y + j
    end end
    SquareSpiral(75) # Peter Luschny, May 05 2019
    
  • Maple
    fx:=proc(n) option remember; local k; if n=1 then 0 else
    k:=floor(sqrt(4*(n-2)+1)) mod 4;
    fx(n-1) + sin(k*Pi/2); fi; end;
    [seq(fx(n),n=1..120)]; # Based on Seppo Mustonen's formula. - N. J. A. Sloane, Jul 11 2016
  • Mathematica
    a[n_]:=a[n]=If[n==0,0,a[n-1]+Sin[Mod[Floor[Sqrt[4*(n-1)+1]],4]*Pi/2]]; Table[a[n],{n,0,50}] (* Seppo Mustonen, Aug 21 2010 *)
  • PARI
    L=0; d=1;
    for(r=1,9,d=-d;k=floor(r/2)*d;for(j=1,L++,print1(k,", "));forstep(j=k-d,-floor((r+1)/2)*d+d,-d,print1(j,", "))) \\ Hugo Pfoertner, Jul 28 2018
    
  • PARI
    a(n) = n--; my(m=sqrtint(n),k=ceil(m/2)); n -= 4*k^2; if(n<0, if(n<-m, k, -k-n), if(nKevin Ryde, Sep 16 2019
    
  • PARI
    apply( A174344(n)={my(m=sqrtint(n-=1), k=m\/2); if(n < 4*k^2-m, k, 0 > n -= 4*k^2, -k-n, n < m, -k, n-3*k)}, [1..99]) \\ M. F. Hasler, Oct 20 2019
    
  • Python
    # Based on Kevin Ryde's PARI script
    import math
    def A174344(n):
        n -= 1
        m = math.isqrt(n)
        k = math.ceil(m/2)
        n -= 4*k*k
        if n < 0: return k if n < -m else -k-n
        return -k if n < m else n-3*k # David Radcliffe, Aug 04 2025

Formula

a(1) = 0, a(n) = a(n-1) + sin(floor(sqrt(4n-7))*Pi/2). For a corresponding formula for the y-coordinate, replace sin with cos. - Seppo Mustonen, Aug 21 2010 with correction by Peter Kagey, Jan 24 2016
a(n) = A010751(A037458(n-1)) for n>1. - William McCarty, Jul 29 2021

Extensions

Link corrected by Seppo Mustonen, Sep 05 2010
Definition clarified by N. J. A. Sloane, Dec 20 2012

A274923 List of y-coordinates of point moving in counterclockwise square spiral.

Original entry on oeis.org

0, 0, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 2, 2, 2, 2, 2, 1, 0, -1, -2, -2, -2, -2, -2, -2, -1, 0, 1, 2, 3, 3, 3, 3, 3, 3, 3, 2, 1, 0, -1, -2, -3, -3, -3, -3, -3, -3, -3, -3, -2, -1, 0, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 2, 1, 0, -1, -2, -3, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -3, -2, -1, 0
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2016

Keywords

Comments

This spiral, in either direction, is sometimes called the "Ulam spiral, but "square spiral" is a better name. (Ulam looked at the positions of the primes, but of course the spiral itself must be much older.) - N. J. A. Sloane, Jul 17 2018
Graham, Knuth and Patashnik give an exercise and answer on mapping n to square spiral x,y coordinates, and back x,y to n. They start 0 at the origin and first segment North so a(n) is their -x(n-1). In their table of sides, it can be convenient to take n-4*k^2 so the ranges split at -m, 0, m. - Kevin Ryde, Sep 17 2019

References

  • Ronald L. Graham, Donald E. Knuth, Oren Patashnik, Concrete Mathematics, Addison-Wesley, 1989, chapter 3, Integer Functions, exercise 40 page 99 and answer page 498.

Crossrefs

Cf. A268038 (negated), A317186 (indices of 0's).
Cf. A174344 (x-coordinates).
The (x,y) coordinates for a point sweeping a quadrant by antidiagonals are (A025581, A002262). - N. J. A. Sloane, Jul 17 2018
A296030 gives pairs (x = A174344(n), y = a(n)). - M. F. Hasler, Oct 20 2019
The diagonal rays of the square spiral (coordinates (+-n,+-n)) are: A002939 (2n(2n-1): 0, 2, 12, 30, ...), A016742 = (4n^2: 0, 4, 16, 36, ...), A002943 (2n(2n+1): 0, 6, 20, 42, ...), A033996 = (4n(n+1): 0, 8, 24, 48, ...). - M. F. Hasler, Oct 31 2019

Programs

  • Maple
    fy:=proc(n) option remember; local k; if n=1 then 0 else
    k:=floor(sqrt(4*(n-2)+1)) mod 4;
    fy(n-1) - cos(k*Pi/2); fi; end;
    [seq(fy(n),n=1..120)]; # Based on Seppo Mustonen's formula in A174344.
  • Mathematica
    a[n_] := a[n] = If[n == 0, 0, a[n-1] - Cos[Mod[Floor[Sqrt[4*(n-1)+1]], 4]* Pi/2]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 11 2018, after Seppo Mustonen *)
  • PARI
    L=1;d=1;
    for(r=1,9,d=-d;k=floor(r/2)*d;for(j=1,L++,print1(k,", "));forstep(j=k-d,-floor((r+1)/2)*d+d,-d,print1(j,", "))) \\ Hugo Pfoertner, Jul 28 2018
    
  • PARI
    a(n) = n--; my(m=sqrtint(n), k=ceil(m/2)); n -= 4*k^2; if(n<0, if(n<-m, 3*k+n, k), if(nKevin Ryde, Sep 17 2019
    
  • PARI
    apply( A274923(n)={my(m=sqrtint(n-=1), k=m\/2); if(m <= n -= 4*k^2, -k, n >= 0, k-n, n >= -m, k, 3*k+n)}, [1..99]) \\ M. F. Hasler, Oct 20 2019
    
  • Python
    # Based on Kevin Ryde's PARI script
    import math
    def A274923(n):
        n -= 1
        m = math.isqrt(n)
        k = math.ceil(m/2)
        n -= 4*k*k
        if n < 0: return 3*k+n if n < -m else k
        return k-n if n < m else -k # David Radcliffe, Aug 04 2025

A296030 Pairs of coordinates for successive integers in the square spiral (counterclockwise).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, -1, 1, -1, 0, -1, -1, 0, -1, 1, -1, 2, -1, 2, 0, 2, 1, 2, 2, 1, 2, 0, 2, -1, 2, -2, 2, -2, 1, -2, 0, -2, -1, -2, -2, -1, -2, 0, -2, 1, -2, 2, -2, 3, -2, 3, -1, 3, 0, 3, 1, 3, 2, 3, 3, 2, 3, 1, 3, 0, 3, -1, 3, -2, 3, -3, 3, -3, 2
Offset: 1

Views

Author

Benjamin Mintz, Dec 03 2017

Keywords

Comments

The spiral is also called the Ulam spiral, cf. A174344, A274923 (x and y coordinates). - M. F. Hasler, Oct 20 2019
The n-th positive integer occupies the point whose x- and y-coordinates are represented in the sequence by a(2n-1) and a(2n), respectively. - Robert G. Wilson v, Dec 03 2017
From Robert G. Wilson v, Dec 05 2017: (Start)
The cover of the March 1964 issue of Scientific American (see link) depicts the Ulam Spiral with a heavy black line separating the numbers from their non-sequential neighbors. The pairs of coordinates for the points on this line, assuming it starts at the origin, form this sequence, negated.
The first number which has an abscissa value of k beginning at 0: 1, 2, 10, 26, 50, 82, 122, 170, 226, 290, 362, 442, 530, 626, 730, 842, 962, ...; g.f.: -(x^3 +7x^2 -x +1)/(x-1)^3;
The first number which has an abscissa value of -k beginning at 0: 1, 5, 17, 37, 65, 101, 145, 197, 257, 325, 401, 485, 577, 677, 785, 901, ...; g.f.: -(5x^2 +2x +1)/(x-1)^3;
The first number which has an ordinate value of k beginning at 0: 1, 3, 13, 31, 57, 91, 133, 183, 241, 307, 381, 463, 553, 651, 757, 871, 993, ...; g.f.: -(7x^2+1)/(x-1)^3;
The first number which has an ordinate value of -k beginning at 0: 1, 7, 21, 43, 73, 111, 157, 211, 273, 343, 421, 507, 601, 703, 813, 931, ...; g.f.: -(3x^2+4x+1)/(x-1)^3;
The union of the four sequences above is A033638.
(End)
Sequences A174344, A268038 and A274923 start with the integer 0 at the origin (0,0). One might then prefer offset 0 as to have (a(2n), a(2n+1)) as coordinates of the integer n. - M. F. Hasler, Oct 20 2019
This sequence can be read as an infinite table with 2 columns, where row n gives the x- and y-coordinate of the n-th point on the spiral. If the point at the origin has number 0, then the points with coordinates (n,n), (-n,n), (n,-n) and (n,-n) have numbers given by A002939(n) = 2n(2n-1): (0, 2, 12, 30, ...), A016742(n) = 4n^2: (0, 4, 16, 36, ...), A002943(n) = 2n(2n+1): (0, 6, 20, 42, ...) and A033996(n) = 4n(n+1): (0, 8, 24, 48, ...), respectively. - M. F. Hasler, Nov 02 2019

Examples

			The integer 1 occupies the initial position, so its coordinates are {0,0}; therefore a(1)=0 and a(2)=0.
The integer 2 occupies the position immediately to the right of 1, so its coordinates are {1,0}.
The integer 3 occupies the position immediately above 2, so its coordinates are {1,1}; etc.
		

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 935.

Crossrefs

Cf. Diagonal rays (+-n,+-n): A002939 (2n(2n-1): 0, 2, 12, 30, ...: NE), A016742 (4n^2: 0, 4, 16, 36, ...: NW), A002943 (2n(2n+1): 0, 6, 20, 42, ...: SW) and A033996 (4n(n+1): 0, 8, 24, 48, ...: SE).

Programs

  • Mathematica
    f[n_] := Block[{k = Ceiling[(Sqrt[n] - 1)/2], m, t}, t = 2k +1; m = t^2; t--; If[n >= m - t, {k -(m - n), -k}, m -= t; If[n >= m - t, {-k, -k +(m - n)}, m -= t; If[n >= m - t, {-k +(m - n), k}, {k, k -(m - n - t)}]]]]; Array[f, 40] // Flatten (* Robert G. Wilson v, Dec 04 2017 *)
    f[n_] := Block[{k = Mod[ Floor[ Sqrt[4 If[OddQ@ n, (n + 1)/2 - 2, (n/2 - 2)] + 1]], 4]}, f[n - 2] + If[OddQ@ n, Sin[k*Pi/2], -Cos[k*Pi/2]]]; f[1] = f[2] = 0; Array[f, 90] (* Robert G. Wilson v, Dec 14 2017 *)
    f[n_] := With[{t = Round@ Sqrt@ n}, 1/2*(-1)^t*({1, -1}(Abs[t^2 - n] - t) + t^2 - n - Mod[t, 2])]; Table[f@ n, {n, 0, 95}] // Flatten (* Mikk Heidemaa May 23 2020, after Stephen Wolfram *)
  • PARI
    apply( {coords(n)=my(m=sqrtint(n), k=m\/2); if(m <= n -= 4*k^2, [n-3*k,-k], n >= 0, [-k,k-n], n >= -m, [-k-n,k], [k,3*k+n])}, [0..99]) \\ Use concat(%) to remove brackets '[', ']'. This function gives the coordinates of n on the spiral starting with 0 at (0,0), as shown in Examples for A174344, A274923, ..., so (a(2n-1),a(2n)) = coords(n-1). To start with 1 at (0,0), change n to n-=1 in sqrtint(). The inverse function is pos(x,y) given e.g. in A316328. - M. F. Hasler, Oct 20 2019
  • Python
    from math import ceil, sqrt
    def get_coordinate(n):
        k=ceil((sqrt(n)-1)/2)
        t=2*k+1
        m=t**2
        t=t-1
        if n >= m - t:
            return k - (m-n), -k
        else:
            m -= t
        if n >= m - t:
            return -k, -k+(m-n)
        else:
            m -= t
        if n >= m-t:
            return -k+(m-n), k
        else:
            return k, k-(m-n-t)
    

Formula

a(2*n-1) = A174344(n).
a(2*n) = A274923(n) = -A268038(n).
abs(a(n+2) - a(n)) < 2.
a(2*n-1)+a(2*n) = A180714(n).
f(n) = floor(-n/4)*ceiling(-3*n/4 - 1/4) mod 2 + ceiling(n/8) (gives the pairs of coordinates for integers in the diagonal rays). - Mikk Heidemaa, May 07 2020

A343640 Coordinate triples (x(n), y(n), z(n); n >= 0) of the 3D square spiral filling space with shells of increasing radius for the sup-norm, in turn filled by squares extending from one pole to the opposite one.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, -1, 1, 1, -1, 0, 1, -1, -1, 1, 0, -1, 1, 1, -1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, -1, 1, 0, -1, 0, 0, -1, -1, 0, 0, -1, 0, 1, -1, 0, 1, 0, -1, 1, 1, -1, 0, 1, -1, -1, 1, -1, -1, 0, -1, -1, -1, -1, 0, -1, -1, 1, -1, -1, 0, 0, -1, 0, 0, -2, 1, 0, -2, 1, 1, -2, 0, 1, -2, -1, 1, -2, -1, 0, -2, -1, -1, -2, 0, -1, -2, 1, -1, -2
Offset: 0

Views

Author

M. F. Hasler, Apr 28 2021

Keywords

Comments

This is a 3D generalization of the 2D square spiral and could be used to produce a 3D variant of Ulam's prime spiral.
See A343630 for an analog using the Euclidean or 2-norm instead of the sup- or oo-norm used here, so points are partitioned in spheres and circles instead of squares and cubes here.
The integer lattice points, Z^3, are listed in order of increasing sup norm R = max(|x|, |y|, |z|). Each "sphere" or shell of given radius R is filled starting at the North or South pole using concentric squares on the top and bottom face and squares of fixed size (2R+1) X (2R+1) at intermediate z-coordinates. Each square (circle for the sup-norm) is filled in the sense of increasing longitude, where the positive x axis corresponds to longitude 0, i.e., the points (r,0,z), (0,r,z), (-r,0,z) and (0,-r,z) are visited in this order. The z-values are alternatively increasing and decreasing (so over a period of two shells they follow the same rectangle-wave shape as the x-values do over the period of each square).
The sequence can be seen as a table with row length of 3, where each row corresponds to the (x,y,z)-coordinates of one point (then the three columns are A343641, A343642 and A343643), or as a table with row lengths 3*A010014, where A010014(r) is the number of points with sup-norm r.
There are (2n+1)^3 integer lattice points with sup norm <= n. Therefore, the point number n (where 0 is the origin) is in the shell r = round(n^(1/3)/2) = floor(...+1/2). Within shell r, which starts with the point number (2r-1)^3 (except for r=0), the first and last (2r+1)^2 points are on square spirals on the top and bottom faces, and the other points are on 2r-1 squares forming "belts" of 8r points each, on the side faces of the cube.

Examples

			Shell r = 0 is the origin, {(0,0,0)}.
Shell r = 1 contains the 3*3 + 4*2 + 3*3 = 26 points with oo-norm 1, i.e., all points with coordinates within {-1, 0, 1} except for the origin. They are listed in a square spiral starting at the North Pole: (0,0,1), (1,0,1), (1,1,1), (0,1,1), (-1,1,1), (-1,0,1), (-1,-1,1), (0,-1,1), (1,-1,1); then on the equator:  (1,0,0), (1,1,0), (0,1,0), (-1,1,0), (-1,0,0), (-1,-1,0), (0,-1,0), (1,-1,0), and then on the South face using an inward spiral: (1,0,-1), (1,1,-1), (0,1,-1), (-1,1,-1), (-1,0,-1), (-1,-1,-1), (0,-1,-1), (1,-1,-1), (0,0,-1).
Since there are no empty shells, the z-coordinate is always increasing for even r and decreasing for odd r.
		

Crossrefs

Cf. A343641, A343642, A343643 (list of x, y resp. z-coordinates only).
Cf. A343631, A343632, A343633 (variant using the Euclidean norm => circle shaped spirals), A342561, A343632, A342563 (another variant).
Cf. A010014 (number of points on a shell with given radius), A016755.
Cf. A174344, A268038, A274923 (2-dimensional square spiral).

Programs

  • PARI
    A343640_row(n)={local(L=List(), a(r, z, d=I)= if(r, for(i=1,8*r, listput(L,[real(r),imag(r),z]); r+=d; abs(real(r))==abs(imag(r)) && d*=I), listput(L,[0,0,z])), s=(-1)^n /* flip South <-> North for odd n */); /* main prog: (1) square spiral on South face from center to board */ for(d=!n,n, a(d,-s*n)); /* (2) "equatorial(?) bands" from South to North */ for(z=1-n,n-1, a(n,s*z)); /* (3) square spiral on North face ending in pole */ for(d=0,n, a(n-d,s*n)); Vec(L)} \\ row n of the table = list of points (x,y,z) in the shell n, i.e., with sup norm n. [Missing "s*" in a(n,s*z) added on May 27 2021]
    A343640_vec=concat([A343640_row(r) | r<-[0..2]]) \\ From r=0 up to n there are (2n+1)^3 points with 3 coordinates each!

A336336 Squared distance from start of a point moving in a square spiral.

Original entry on oeis.org

0, 1, 2, 1, 2, 1, 2, 1, 2, 5, 4, 5, 8, 5, 4, 5, 8, 5, 4, 5, 8, 5, 4, 5, 8, 13, 10, 9, 10, 13, 18, 13, 10, 9, 10, 13, 18, 13, 10, 9, 10, 13, 18, 13, 10, 9, 10, 13, 18, 25, 20, 17, 16, 17, 20, 25, 32, 25, 20, 17, 16, 17, 20, 25, 32, 25, 20, 17, 16, 17, 20, 25, 32
Offset: 1

Views

Author

Hugo Pfoertner, Jul 18 2020

Keywords

Comments

The terms corresponding to the corner points of the spiral with a(k-1) < a(k) > a(k+1), i.e., 2, 2, 2, 5, 8, 8, 8, 13, 18, 18, 18, ... are given by the sequence A001105(1) repeated 3 times, (A001105(1)+A001105(2))/2, A001105(2) repeated 3 times, (A001105(2)+A001105(3))/2, A001105(3) repeated 3 times, ... .
These numbers are the norms of the Gaussian integers discussed in A345436. - N. J. A. Sloane, Jun 25 2021

Crossrefs

Programs

  • PARI
    A336336(m)={my(v=vectorsmall(m));for(Lstart=0,1,my(L=Lstart,d=1,n=0);for(r=1,oo,d=-d;my(k=floor(r/2)*d); for(j=1,L++,n++;if(n<=m,v[n]+=k*k));forstep(j=k-d,-floor((r+1)/2)*d+d,-d,n++;if(n<=m,v[n]+=j*j));if(n>m,break)));v};
    A336336(73)

Formula

a(n) = A174344(n)^2 + A268038(n)^2 = A174344(n)^2 + A274923(n)^2.

A334751 a(n) is the number immediately above n in a clockwise square spiral of the positive integers with the first step to the right.

Original entry on oeis.org

8, 9, 2, 1, 6, 7, 22, 23, 24, 25, 10, 11, 12, 3, 4, 5, 18, 19, 20, 21, 44, 45, 46, 47, 48, 49, 26, 27, 28, 29, 30, 13, 14, 15, 16, 17, 38, 39, 40, 41, 42, 43, 74, 75, 76, 77, 78, 79, 80, 81, 50, 51, 52, 53, 54, 55, 56, 31, 32, 33, 34, 35, 36, 37, 66, 67, 68, 69
Offset: 1

Views

Author

Peter Kagey, May 10 2020

Keywords

Comments

Equivalently the number immediately below n in a counterclockwise spiral of the positive integers with the first step to the right.
This is a permutation of the positive integers. A334752 is the inverse permutation.

Examples

			For n = 1, a(1) = 8 because 8 is immediately above one in the clockwise square spiral with first step to the right:
  21--22--23--24--25--26
  |                    |
  20  7---8---9---10  27
  |   |            |   |
  19  6   1---2   11  28
  |   |       |    |   |
  18  5---4---3   12  29
  |                |   |
  17--16--15--14--13  30
                       |
  36--35--34--33--32--31
		

Crossrefs

Cf. A068225 (right), A068226 (left), A334752 (below).
Cf. A174344 (x-coordinate), A268038 (y-coordinate).

A334752 a(n) is the number immediately below n in a clockwise square spiral of the positive integers with the first step to the right.

Original entry on oeis.org

4, 3, 14, 15, 16, 5, 6, 1, 2, 11, 12, 13, 32, 33, 34, 35, 36, 17, 18, 19, 20, 7, 8, 9, 10, 27, 28, 29, 30, 31, 58, 59, 60, 61, 62, 63, 64, 37, 38, 39, 40, 41, 42, 21, 22, 23, 24, 25, 26, 51, 52, 53, 54, 55, 56, 57, 92, 93, 94, 95, 96, 97, 98, 99, 100, 65, 66
Offset: 1

Views

Author

Peter Kagey, May 10 2020

Keywords

Comments

Equivalently the number immediately above n in a counterclockwise square spiral of the positive integers with the first step to the right.
This is a permutation of the positive integers. A334751 is the inverse permutation.

Examples

			For n = 1, a(1) = 4 because 4 is immediately below 1 in the clockwise square spiral with first step to the right:
  21--22--23--24--25--26
  |                    |
  20  7---8---9---10  27
  |   |            |   |
  19  6   1---2   11  28
  |   |       |    |   |
  18  5---4---3   12  29
  |                |   |
  17--16--15--14--13  30
                       |
  36--35--34--33--32--31
		

Crossrefs

Cf. A068225 (right), A068226 (left), A334751 (above).
Cf. A174344 (x-coordinate), A268038 (y-coordinate).

A329972 Y-coordinate of a point moving in a triangular spiral.

Original entry on oeis.org

0, 0, 1, 0, -1, -1, -1, -1, -1, -1, 0, 1, 2, 1, 0, -1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, 0, 1, 2, 3, 2, 1, 0, -1, -2, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -2, -1, 0, 1, 2, 3, 4, 3, 2, 1, 0, -1, -2, -3, -4
Offset: 0

Views

Author

Mikk Heidemaa, Nov 26 2019

Keywords

Comments

A329116 gives x-coordinates for a point moving in counterclockwise triangular spiral.

Examples

			    y
     |
   4 |                         56
     |                           \
     |                            \
     |                             \
   3 |                         30  55
     |                         / \   \
     |                        /   \   \
     |                       /     \   \
   2 |                     31  12  29  54
     |                     /   / \   \   \
     |                    /   /   \   \   \
     |                   /   /     \   \   \
   1 |                 32  13   2  11  28  53
     |                 /   /   / \   \   \   \
     |                /   /   /   \   \   \   \
     |               /   /   /     \   \   \   \
   0 |             33  14   3   0---1  10  27  52
     |             /   /   /             \   \   \
     |            /   /   /               \   \   \
     |           /   /   /                 \   \   \
  -1 |         34  15   4---5---6---7---8---9  26  51
     |         /   /                             \   \
     |        /   /                               \   \
     |       /   /                                 \   \
  -2 |     35  16--17--18--19--20--21--22--23--24--25  50
     |     /                                             \
     |    /                                               \
     |   /                                                 \
  -3 | 36--37--38--39--40--41--42--43--44--45--46--47--48--49
     |
     +--------------------------------------------------------
   x:  -6  -5  -4  -3  -2  -1   0   1   2   3   4   5   6   7
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Table[Floor[Min[#*Max[0, 2*Mod[#, 2] - 2], -2*#*Mod[#, -1]] + Ceiling[-#/2]] &[Sqrt@ k], {k, 0, n}]; a[64]

Formula

a(n) = floor(min(s*max(((0, 2*s) mod 2) - 2), (-2*s*s) mod (-1)) + ceiling(-s/2)) where s=sqrt(n).

A332582 Label the cells of the infinite 2D square lattice with the square spiral (or Ulam spiral), starting with 1 at the center; sequence lists primes that are visible from square 1.

Original entry on oeis.org

2, 3, 5, 7, 29, 41, 47, 83, 89, 97, 103, 107, 109, 113, 173, 179, 181, 191, 193, 199, 223, 293, 311, 317, 347, 353, 359, 443, 449, 457, 461, 467, 479, 487, 491, 499, 503, 509, 521, 523, 631, 641, 643, 647, 653, 659, 661, 673, 683, 691, 701, 709, 719, 727, 857, 863, 887, 929, 947, 953, 1091
Offset: 1

Views

Author

Scott R. Shannon, Feb 17 2020

Keywords

Comments

Any grid point with relative coordinates (x,y) from the central grid point, which is numbered 1, and where the greatest common divisor (gcd) of |x| and |y| equals 1 will be visible from the central point. Grid points where gcd(|x|,|y|) > 1 will have another point directly between it and the central point and will thus not be visible. In an infinite 2D square lattice the ratio of visible grid points to all points is 6/Pi^2, approximately 0.608, the same as the probability of two random numbers being relative prime.
For a square spiral of size 10001 X 10001, slightly over 100 million numbers, a total of 60803664 numbers are visible, of which 2155170 are prime. The total number of primes in the same range is 5762536, giving a ratio of visible primes to all primes of about 0.374. This is significantly lower than the ratio for all numbers of 0.608, indicating a prime is more likely to be hidden from the origin than a random number.
Primes p such that A174344(p) and A268038(p) are coprime. - Robert Israel, Feb 16 2024

Examples

			The 2D grid is shown below. Composite numbers are shown as a '*'. The primes that are blocked from the central 1 square are in parentheses; these all have another composite or prime number directly between their position and the central square.
.
.
    *----*----*--(61)---*--(59)---*----*
                                       |
  (37)---*----*----*----*----*--(31)   *
    |                             |    |
    *  (17)---*----*----*--(13)   *    *
    |    |                   |    |    |
    *    *    5----*----3    *   29    *
    |    |    |         |    |    |    |
    *  (19)   *    1----2  (11)   *  (53)
    |    |    |              |    |    |
   41    *    7----*----*----*    *    *
    |    |                        |    |
    *    *----*--(23)---*----*----*    *
    |                                  |
  (43)---*----*----*---47----*----*----*
.
.
a(1) = 2 to a(4) = 7 are all primes adjacent to the central 1 point, thus all are visible from that square.
a(5) = 29 as primes 11, 13, 17, 19, 23 are blocked from the central 1 point by points numbered 2, 3, 5, 6, 8 respectively.
		

Crossrefs

Programs

  • Maple
    x:= 0: y:= 0: R:= NULL: count:= 0:
    for i from 2 while count < 100 do
      if x >= y then
        if x < -y + 1 then x:= x+1
        elif x > y then y:= y+1
        else x:= x-1
        fi
      elif x <= -y then y:= y-1
        else x:= x-1
      fi;
      if isprime(i) and igcd(abs(x),abs(y))=1 then R:= R,i; count:= count+1 fi
    od:
    R; # Robert Israel, Feb 16 2024

A335298 a(n) is the squared distance between the points P(n) and P(0) on a plane, n >= 0, such that the distance between P(n) and P(n+1) is n+1 and, going from P(n) to P(n+2), a 90-degree left turn is taken in P(n+1).

Original entry on oeis.org

0, 1, 5, 8, 8, 13, 25, 32, 32, 41, 61, 72, 72, 85, 113, 128, 128, 145, 181, 200, 200, 221, 265, 288, 288, 313, 365, 392, 392, 421, 481, 512, 512, 545, 613, 648, 648, 685, 761, 800, 800, 841, 925, 968, 968, 1013, 1105, 1152, 1152, 1201, 1301, 1352, 1352, 1405, 1513
Offset: 0

Views

Author

Gerhard Kirchner, Jun 28 2020

Keywords

Comments

P(n) is a corner on a spiral like this:
* * * * * * * * * * * *
*
* * * * * * * * *
* * *
* * * * * * *
* * * * *
* * * * * *
* * * *
* * * * * * * *
* *
* * * * * * * * * *
If we interpret the pointer from P(0) to P(n) as a complex number z(n), the description of the spiral is short because a 90-degree left turn is a multiplication by i (imaginary unit) and the distance of P(n) from P(0) is abs(z(n))^2, see formula 1.

Examples

			  n  n*i^(n-1)  z(n)  a(n)
------------------------------------
  0     0        0     0
  1     1        1     1
  2     2i      1+2i   5 = 1^2 + 2^2
  3    -3      -2+2i   8 = 2^2 + 2^2
  4    -4i     -2-2i   8
  5     5       3-2i  13 = 3^2 + 2^2
  6     6i      3+4i  25 = 3^2 + 4^2
		

Crossrefs

Programs

  • Mathematica
    z[0]=0; z[n_]:=z[n-1]+n*I^(n-1); a[n_]:=z[n]*Conjugate[z[n]]; Array[a,55,0] (* Stefano Spezia, Jun 28 2020 *)

Formula

a(n) = abs(z(n))^2 with
1) z(n) = z(n-1)+n*i^(n-1), z(0)=0. (recursive)
2) z(n) = i/2*(n*i^(n+1)-(n+1)*i^n+1). (explicit)
Without complex numbers for k >= 0:
a(4*k) = 8*k^2,
a(4*k+1) = 8*k^2+4*k+1,
a(4*k+2) = 8*k^2+12*k+5,
a(4*k+3) = 8*(k+1)^2.
From Stefano Spezia, Jun 28 2020: (Start)
G.f.: x*(1 + 2*x - 2*x^2 + 2*x^3 + x^4)/((1 - x)^3*(1 + x^2)^2).
a(n) = 3*a(n-1) - 5*a(n-2) + 7*a(n-3) - 7*a(n-4) + 5*a(n-5) - 3*a(n-6) + a(n-7) for n > 6. (End)
Showing 1-10 of 14 results. Next