cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268063 Primes of the form (k^3 - k^2 - k - 1)/2 for some integer k > 0.

Original entry on oeis.org

7, 47, 599, 1567, 5807, 7487, 9463, 20807, 24623, 28879, 33599, 81647, 111599, 123007, 161839, 225263, 262399, 282407, 397807, 541007, 573247, 606743, 641519, 922807, 1115399, 1513727, 1577383, 1709999, 1779007, 1849847, 1997119, 2399039, 2573807, 2948399
Offset: 1

Views

Author

Emre APARI, Jan 25 2016

Keywords

Comments

Also primes of the form 4*k^3 + 4*k^2 - 1.

Examples

			k=15: (15^3 - 15^2 - 15 - 1)/2 = 1567 (is prime).
		

Crossrefs

Programs

  • Magma
    [a: n in [0..200] | IsPrime(a) where a is (n^3-n^2-n-1) div 2 ]; // Vincenzo Librandi, Jan 26 2016
    
  • Mathematica
    Select[Table[(n^3 - n^2 - n - 1) / 2, {n, 200}], PrimeQ] (* Vincenzo Librandi, Jan 26 2016 *)
  • PARI
    lista(nn) = for(n=1, nn, if(ispseudoprime(p=4*n^3+4*n^2-1), print1(p, ", "))); \\ Altug Alkan, Mar 14 2016
  • Sage
    [(k^3-k^2-k-1)/2 for k in [2*i+1 for i in [1..100]] if is_prime(Integer((k^3-k^2-k-1)/2))] # Tom Edgar, Jan 25 2016
    

Extensions

More terms from Tom Edgar, Jan 25 2016