cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A269877 a(n) = 2^(4*n-3)*n*(2*n-1)*(900*n^4-4500*n^3+8895*n^2-8055*n+2764), a closed form for a double binomial sum involving absolute values.

Original entry on oeis.org

0, 8, 121728, 77214720, 12676235264, 1090372239360, 64922717257728, 3052335748087808, 121762580539637760, 4304417014325182464, 138706918527488491520, 4154140250223566389248, 117243264067548833906688, 3150495258536853477785600, 81236017376284183797694464
Offset: 0

Views

Author

Vincenzo Librandi, May 10 2016

Keywords

Comments

A fast algorithm follows from Theorem 5 of Brent et al. article.

Crossrefs

Programs

  • Magma
    [2^(4*n-3)*n*(2*n-1)*(900*n^4-4500*n^3+8895*n^2-8055*n+2764): n in [0..20]];
  • Mathematica
    Table[2^(4 n - 3) n (2 n - 1) (900 n^4 - 4500 n^3 + 8895 n^2 - 8055 n + 2764), {n, 0, 15}]
    LinearRecurrence[{112,-5376,143360,-2293760,22020096,-117440512,268435456},{0,8,121728,77214720,12676235264,1090372239360,64922717257728},20] (* Harvey P. Dale, Oct 28 2023 *)

Formula

G.f.: 8*x*(1 + 15104*x + 7953024*x^2 + 585181184*x^3 + 8538456064*x^4 + 19750453248*x^5)/(1-16*x)^7.
a(n) = Sum_{k=-n..n} (Sum_{l=-n..n} binomial(2*n, n+k)*binomial(2*n, n+l)*(k^2 - l^2)^6).
a(n) = 2^(4*n-3)*n*(2*n-1)*(900*n^4-4500*n^3+8895*n^2-8055*n+2764).

A272913 a(n) = 3*2^(2*n-1)*(n-1)*n^3*binomial(2*n,n)^2, a closed form for a triple binomial sum involving absolute values.

Original entry on oeis.org

0, 0, 6912, 2073600, 361267200, 48771072000, 5665247723520, 595732271726592, 58357447026278400, 5420989989833932800, 483204292920999936000, 41671538221507034480640, 3497929581885972295974912, 287077554068924493987840000, 23115688495680026711162880000
Offset: 0

Views

Author

Bruno Berselli, May 10 2016

Keywords

Comments

See Theorem 6 of Brent et al. article.
a(n) is divisible by 48^2.

Crossrefs

Programs

  • Magma
    [3*2^(2*n-1)*(n-1)*n^3*Binomial(2*n,n)^2: n in [0..20]];
  • Mathematica
    Table[3 2^(2 n - 1) (n - 1) n^3 Binomial[2 n, n]^2, {n, 0, 20}]
  • PARI
    vector(20, n, n--; 3*2^(2*n-1)*(n-1)*n^3*binomial(2*n,n)^2)
    
  • Sage
    [3*2^(2*n-1)*(n-1)*n^3*binomial(2*n, n)^2 for n in range(20)]
    

Formula

a(n) = Sum_{i=-n..n} (Sum_{j=-n..n} (Sum_{k=-n..n} binomial(2*n, n+i)*binomial(2*n, n+j)*binomial(2*n, n+k)*|(i^2-j^2)*(i^2-k^2)*(j^2-k^2)|)).
G.f.: 6912*x^2*(2F1(5/2, 5/2, 2, 64*x) + 100*x*2F1(7/2, 7/2, 3, 64*x)), where 2F1() is the Gauss hypergeometric function.
D-finite with recurrence (n-2)*(n-1)^2*a(n) -16*n*(2*n-1)^2*a(n-1)=0. - R. J. Mathar, Feb 08 2021
Showing 1-2 of 2 results.