A268187 Triangle read by rows: T(n,k) is the number of no-leg partitions of n having Durfee square of size k (n >= 1, 1 <= k <= floor(sqrt(n))). Also, number of no-arm partitions of n having Durfee square of size k.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 4, 1, 1, 4, 2, 1, 5, 3, 1, 5, 4, 1, 6, 5, 1, 6, 7, 1, 7, 8, 1, 1, 7, 10, 1, 1, 8, 12, 2, 1, 8, 14, 3, 1, 9, 16, 5, 1, 9, 19, 6, 1, 10, 21, 9, 1, 10, 24, 11, 1, 11, 27, 15, 1, 11, 30, 18, 1, 1, 12, 33, 23, 1
Offset: 1
Examples
T(9,2) = 3 because we have [7,2], [6,3], and [5,4]. Triangle begins: 1; 1; 1; 1, 1; 1, 1; 1, 2; 1, 2; 1, 3; 1, 3, 1; 1, 4, 1; 1, 4, 2; 1, 5, 3; 1, 5, 4; 1, 6, 5; 1, 6, 7; 1, 7, 8, 1; ...
Links
- Alois P. Heinz, Rows n = 1..1000, flattened
- Eric Weisstein's World of Mathematics, Rogers-Ramanujan Identities
Programs
-
Maple
G := add(t^k*x^(k^2)/mul(1-x^i, i = 1 .. k), k = 0 .. 80): Gser := simplify(series(G, x = 0,40)): for n to 35 do P[n] := sort(coeff(Gser, x, n)) end do: for n to 35 do seq(coeff(P[n], t, j), j = 1 .. degree(P[n])) end do; # yields sequence in triangular form # second Maple program: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))) end: T:= (n, k)-> b(n-k^2, k): seq(seq(T(n, k), k=1..floor(sqrt(n))), n=1..30); # Alois P. Heinz, Jan 30 2016
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; T[n_, k_] := b[n-k^2, k]; Table[T[n, k], {n, 1, 30}, {k, 1, Floor[Sqrt[n]]}] // Flatten (* Jean-François Alcover, Dec 10 2016 after Alois P. Heinz *)
-
PARI
T(n, k) = polcoef(1/prod(j=1, k, 1-x^j+x*O(x^n)), n-k*k); tabf(nn) = for(n=1, nn, for(k=1, sqrtint(n), print1(T(n, k), ", ")); print) \\ Seiichi Manyama, Oct 14 2019
Formula
G.f.: G(t,x) = Sum_{k>=0} ( t^k*x^(k^2)/Product_{i=1..k} (1-x^i) ).
Sum_{k>=0} T(n,k) = A003114(n).
Sum_{k>=1} k * T(n,k) = A268188(n).
Sum_{k>=0} k! * T(n,k) = A327710(n). - Alois P. Heinz, Feb 25 2020
Comments