cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A003114 Number of partitions of n into parts 5k+1 or 5k+4.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 14, 17, 19, 23, 26, 31, 35, 41, 46, 54, 61, 70, 79, 91, 102, 117, 131, 149, 167, 189, 211, 239, 266, 299, 333, 374, 415, 465, 515, 575, 637, 709, 783, 871, 961, 1065, 1174, 1299, 1429, 1579, 1735, 1913, 2100, 2311, 2533, 2785
Offset: 0

Views

Author

Keywords

Comments

Expansion of Rogers-Ramanujan function G(x) in powers of x.
Same as number of partitions into distinct parts where the difference between successive parts is >= 2.
As a formal power series, the limit of polynomials S(n,x): S(n,x)=sum(T(i,x),0<=i<=n); T(i,x)=S(i-2,x).x^i; T(0,x)=1,T(1,x)=x; S(n,1)=A000045(n+1), the Fibonacci sequence. - Claude Lenormand (claude.lenormand(AT)free.fr), Feb 04 2001
The Rogers-Ramanujan identity is 1 + Sum_{n >= 1} t^(n^2)/((1-t)*(1-t^2)*...*(1-t^n)) = Product_{n >= 1} 1/((1-t^(5*n-1))*(1-t^(5*n-4))).
Coefficients in expansion of permanent of infinite tridiagonal matrix:
1 1 0 0 0 0 0 0 ...
x 1 1 0 0 0 0 0 ...
0 x^2 1 1 0 0 0 ...
0 0 x^3 1 1 0 0 ...
0 0 0 x^4 1 1 0 ...
................... - Vladeta Jovovic, Jul 17 2004
Also number of partitions of n such that the smallest part is greater than or equal to number of parts. - Vladeta Jovovic, Jul 17 2004
Also number of partitions of n such that if k is the largest part, then each of {1, 2, ..., k-1} occur at least twice. Example: a(9)=5 because we have [3, 2, 2, 1, 1], [2, 2, 2, 1, 1, 1], [2, 2, 1, 1, 1, 1, 1], [2, 1, 1, 1, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1]. - Emeric Deutsch, Feb 27 2006
Also number of partitions of n such that if k is the largest part, then k occurs at least k times. Example: a(9)=5 because we have [3, 3, 3], [2, 2, 2, 2, 1], [2, 2, 2, 1, 1, 1], [2, 2, 1, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1]. - Emeric Deutsch, Apr 16 2006
a(n) = number of NW partitions of n, for n >= 1; see A237981.
For more about the generalized Rogers-Ramanujan series G[i](x) see the Andrews-Baxter and Lepowsky-Zhu papers. The present series is G[1](x). - N. J. A. Sloane, Nov 22 2015
Convolution of A109700 and A109697. - Vaclav Kotesovec, Jan 21 2017

Examples

			G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 4*x^8 + 5*x^9 + ...
G.f. = 1/q + q^59 + q^119 + q^179 + 2*q^239 + 2*q^299 + 3*q^359 + 3*q^419 + ...
From _Joerg Arndt_, Dec 27 2012: (Start)
The a(16)=17 partitions of 16 where all parts are 1 or 4 (mod 5) are
  [ 1]  [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]
  [ 2]  [ 4 1 1 1 1 1 1 1 1 1 1 1 1 ]
  [ 3]  [ 4 4 1 1 1 1 1 1 1 1 ]
  [ 4]  [ 4 4 4 1 1 1 1 ]
  [ 5]  [ 4 4 4 4 ]
  [ 6]  [ 6 1 1 1 1 1 1 1 1 1 1 ]
  [ 7]  [ 6 4 1 1 1 1 1 1 ]
  [ 8]  [ 6 4 4 1 1 ]
  [ 9]  [ 6 6 1 1 1 1 ]
  [10]  [ 6 6 4 ]
  [11]  [ 9 1 1 1 1 1 1 1 ]
  [12]  [ 9 4 1 1 1 ]
  [13]  [ 9 6 1 ]
  [14]  [ 11 1 1 1 1 1 ]
  [15]  [ 11 4 1 ]
  [16]  [ 14 1 1 ]
  [17]  [ 16 ]
The a(16)=17 partitions of 16 where successive parts differ by at least 2 are
  [ 1]  [ 7 5 3 1 ]
  [ 2]  [ 8 5 3 ]
  [ 3]  [ 8 6 2 ]
  [ 4]  [ 9 5 2 ]
  [ 5]  [ 9 6 1 ]
  [ 6]  [ 9 7 ]
  [ 7]  [ 10 4 2 ]
  [ 8]  [ 10 5 1 ]
  [ 9]  [ 10 6 ]
  [10]  [ 11 4 1 ]
  [11]  [ 11 5 ]
  [12]  [ 12 3 1 ]
  [13]  [ 12 4 ]
  [14]  [ 13 3 ]
  [15]  [ 14 2 ]
  [16]  [ 15 1 ]
  [17]  [ 16 ]
(End)
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109, 238.
  • G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(e), p. 591.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 669.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 107.
  • G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, pp. 90-92.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, pp. 290-291.
  • H. P. Robinson, Letter to N. J. A. Sloane, Jan 04 1974.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A188216 (least part k occurs at least k times).
For the generalized Rogers-Ramanujan series G[1], G[2], G[3], G[4], G[5], G[6], G[7], G[8] see A003114, A003106, A006141, A264591, A264592, A264593, A264594, A264595. G[0] = G[1]+G[2] is given by A003113.
Row sums of A268187.

Programs

  • Haskell
    a003114 = p a047209_list where
       p _      0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Jan 05 2011
    
  • Haskell
    a003114 = p 1 where
       p _ 0 = 1
       p k m = if k > m then 0 else p (k + 2) (m - k) + p (k + 1) m
    -- Reinhard Zumkeller, Feb 19 2013
  • Maple
    g:=sum(x^(k^2)/product(1-x^j,j=1..k),k=0..10): gser:=series(g,x=0,65): seq(coeff(gser,x,n),n=0..60); # Emeric Deutsch, Feb 27 2006
  • Mathematica
    CoefficientList[ Series[Sum[x^k^2/Product[1 - x^j, {j, 1, k}], {k, 0, 10}], {x, 0, 65}], x][[1 ;; 61]] (* Jean-François Alcover, Apr 08 2011, after Emeric Deutsch *)
    Table[Count[IntegerPartitions[n], p_ /; Min[p] >= Length[p]], {n, 0, 24}] (* Clark Kimberling, Feb 13 2014 *)
    a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x^1, x^5] QPochhammer[ x^4, x^5]), {x, 0, n}]; (* Michael Somos, May 17 2015 *)
    a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{-1, 0, 0, -1, 0}[[Mod[k, 5, 1]]], {k, n}], {x, 0, n}]; (* Michael Somos, May 17 2015 *)
    nmax = 60; kmax = nmax/5;
    s = Flatten[{Range[0, kmax]*5 + 1}~Join~{Range[0, kmax]*5 + 4}];
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 02 2020 *)
  • PARI
    {a(n) = my(t); if( n<0, 0, t = 1 + x * O(x^n); polcoeff( sum(k=1, sqrtint(n), t *= x^(2*k - 1) / (1 - x^k) * (1 + x * O(x^(n - k^2))), 1), n))}; /* Michael Somos, Oct 15 2008 */
    

Formula

G.f.: Sum_{k>=0} x^(k^2)/(Product_{i=1..k} 1-x^i).
The g.f. above is the special case D=2 of sum(n>=0, x^(D*n*(n+1)/2 - (D-1)*n) / prod(k=1..n, 1-x^k) ), the g.f. for partitions into distinct part where the difference between successive parts is >= D. - Joerg Arndt, Mar 31 2014
G.f.: 1 + sum(i=1, oo, x^(5i+1)/prod(j=1 or 4 mod 5 and j<=5i+1, 1-x^j) + x^(5i+4)/prod(j=1 or 4 mod 5 and j<=5i+4, 1-x^j)). - Jon Perry, Jul 06 2004
G.f.: (Product_{k>0} 1 + x^(2*k)) * (Sum_{k>=0} x^(k^2) / (Product_{i=1..k} 1 - x^(4*i))). - Michael Somos, Oct 19 2006
Euler transform of period 5 sequence [ 1, 0, 0, 1, 0, ...]. - Michael Somos, Oct 15 2008
Expansion of f(-x^5) / f(-x^1, -x^4) in powers of x where f(,) is the Ramanujan general theta function. - Michael Somos, May 17 2015
Expansion of f(-x^2, -x^3) / f(-x) in powers of x where f(,) is the Ramanujan general theta function. - Michael Somos, Jun 13 2015
a(n) ~ phi^(1/2) * exp(2*Pi*sqrt(n/15)) / (2 * 3^(1/4) * 5^(1/2) * n^(3/4)) * (1 - (3*sqrt(15)/(16*Pi) + Pi/(60*sqrt(15))) / sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 23 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284150(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 21 2017

A268188 Sum of the sizes of the Durfee squares of all no-leg partitions of n (or of all no-arm partitions of n).

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 5, 7, 10, 12, 15, 20, 23, 28, 34, 43, 49, 61, 71, 87, 100, 120, 137, 164, 190, 221, 254, 298, 340, 396, 451, 520, 592, 679, 769, 883, 996, 1133, 1278, 1453, 1632, 1850, 2072, 2339, 2620, 2947, 3288, 3695, 4119, 4608, 5129, 5728, 6360, 7091, 7862
Offset: 1

Views

Author

Emeric Deutsch, Jan 29 2016

Keywords

Comments

Given a partition P, the partition formed by the cells situated below the Durfee square of P is called the leg of P. Similarly, the partition formed by the cells situated to the right of the Durfee square of P is called the arm of P.
Conjecture: also a(n) is the number of parts in the partitions of n whose parts differ by at least 2. For example, for n = 5, these partitions are 5, 41 with 3 parts in all. George Beck, Apr 22 2017
Note added Apr 22 2017. George E. Andrews informed me that this is part of the common interpretation of the Rogers-Ramanujan identities. - George Beck

Examples

			a(9)=10 because the no-leg partitions of 9 are [9], [7,2], [6,3], [5,4], and [3,3,3] with sizes of Durfee squares 1,2,2,2, and 3, respectively.
		

References

  • George E. Andrews, "Partitions and Durfee Dissection", Amer. J. Math. 101(1979), 735-742.

Crossrefs

Programs

  • Maple
    g := add(k*x^(k^2)/mul(1-x^i, i = 1 .. k), k = 1 .. 100): gser := series(g, x = 0, 60): seq(coeff(gser, x, n), n = 1 .. 55);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> add(k*b(n-k^2, k), k=1..floor(sqrt(n))):
    seq(a(n), n=1..60);  # Alois P. Heinz, Jan 30 2016
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + If[i > n, 0, b[n - i, i]]]]; a[n_] := Sum[k*b[n - k^2, k], {k, 1, Floor[Sqrt[n]]}]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Dec 21 2016, after Alois P. Heinz *)

Formula

a(n) = Sum_{k>=1} k*A268187(n,k).
G.f.: g = Sum_{k>=1} (k*x^(k^2)/Product_{i=1..k}(1-x^i)).
a(n) ~ 3^(1/4) * log(phi) * phi^(1/2) * exp(2*Pi*sqrt(n/15)) / (2*Pi*n^(1/4)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Mar 09 2020

A327710 Number of compositions of n into distinct parts such that the difference between any two parts is at least two.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 5, 5, 7, 13, 15, 21, 29, 35, 43, 55, 87, 99, 137, 173, 235, 277, 363, 429, 545, 755, 895, 1135, 1443, 1827, 2285, 2837, 3463, 4285, 5199, 6309, 8237, 9755, 12091, 14743, 18351, 22251, 27833, 33125, 40819, 49045, 59691, 70869, 86033, 106163
Offset: 0

Views

Author

Alois P. Heinz, Feb 24 2020

Keywords

Comments

All terms are odd.

Examples

			a(9) = 13: 135, 153, 315, 351, 513, 531, 36, 63, 27, 72, 18, 81, 9.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(i*(i+1)/2 b(n$2, 0):
    seq(a(n), n=0..50);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1,
         `if`(i<1, 0, b(n, i-1)+b(n-i, min(n-i, i))))
        end:
    a:= n-> add(k!*b(n-k^2, k), k=0..floor(sqrt(n))):
    seq(a(n), n=0..50);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,
         b[n, i - 1] + b[n - i, Min[n - i, i]]]];
    a[n_] := Sum[k!*b[n - k^2, k], {k, 0, Floor[Sqrt[n]]}];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jul 12 2021, after Alois P. Heinz *)

Formula

a(n) = Sum_{k>=0} k! * A268187(n,k).
G.f.: Sum_{k>=0} k! * x^(k^2) / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Dec 04 2020

A328346 Triangle read by rows: T(n,k) is the coefficient of x^(n - k*(k+1)) in Product_{j=1..k} 1/(1 - x^j) for n >= 0, 0 <= k <= A259361(n).

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 2, 0, 1, 3, 0, 1, 3, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 5, 2, 0, 1, 5, 3, 0, 1, 6, 4, 0, 1, 6, 5, 0, 1, 7, 7, 0, 1, 7, 8, 0, 1, 8, 10, 1, 0, 1, 8, 12, 1, 0, 1, 9, 14, 2, 0, 1, 9, 16, 3, 0, 1, 10, 19, 5, 0, 1, 10, 21, 6
Offset: 0

Views

Author

Seiichi Manyama, Oct 13 2019

Keywords

Examples

			Triangle begins:
  1;
  0;
  0, 1;
  0, 1;
  0, 1;
  0, 1;
  0, 1, 1;
  0, 1, 1;
  0, 1, 2;
  0, 1, 2;
  0, 1, 3;
  0, 1, 3;
  0, 1, 4,  1;
  0, 1, 4,  1;
  0, 1, 5,  2;
  0, 1, 5,  3;
  0, 1, 6,  4;
  0, 1, 6,  5;
  0, 1, 7,  7;
  0, 1, 7,  8;
  0, 1, 8, 10, 1;
		

Crossrefs

Row sums give A003106.

Programs

  • PARI
    T(n, k) = polcoef(1/prod(j=1, k, 1-x^j+x*O(x^n)), n-k*(k+1));
    tabf(nn) = for(n=0, nn, for(k=0, (-1+sqrt(1+4*n))/2, print1(T(n, k), ", ")); print)
Showing 1-4 of 4 results.