cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A268222 Triangle read by rows: T(n,k) (n>=5, k=3..n-2) is the number of topologies t on n points having exactly k open sets such that t contains exactly one open set of size m for each m in {0,4,5,6,...,s,n} where s is the size of the largest proper open set in t.

Original entry on oeis.org

5, 15, 30, 35, 105, 210, 70, 280, 840, 1680, 126, 630, 2520, 7560, 15120, 210, 1260, 6300, 25200, 75600, 151200, 330, 2310, 13860, 69300, 277200, 831600, 1663200, 495, 3960, 27720, 166320, 831600, 3326400, 9979200, 19958400, 715, 6435, 51480, 360360, 2162160, 10810800, 43243200, 129729600, 259459200
Offset: 5

Views

Author

N. J. A. Sloane, Jan 30 2016

Keywords

Examples

			Triangle begins:
    5;
   15,   30;
   35,  105,  210;
   70,  280,  840,  1680;
  126,  630, 2520,  7560, 15120;
  210, 1260, 6300, 25200, 75600, 151200;
...
		

Crossrefs

Row sums give A268219.
Triangles in this series: A119741, A268217, A268221, A268222, A268223.
Cf. A282507.

Programs

  • Mathematica
    i = 4; Table[Table[Binomial[n, i] FactorialPower[n - i, k], {k, 0,
    n - i - 1}], {n, 2, 12}] // Grid (* Geoffrey Critzer, Feb 19 2017 *)

Extensions

Title clarified and more terms added by Geoffrey Critzer, Feb 19 2017
Missing a(19) inserted and a(41) onwards from Andrew Howroyd, Aug 10 2025

A268223 Triangle read by rows: T(n,k) (n>=6, k=3..n-3) is the number of topologies t on n points having exactly k open sets such that t contains exactly one open set of size m for each m in {0,5,6,7,...,s,n} where s is the size of the largest proper open set in t.

Original entry on oeis.org

6, 21, 42, 56, 168, 336, 126, 504, 1512, 3024, 252, 1260, 5040, 15120, 30240, 462, 2772, 13860, 55440, 166320, 332640, 792, 5544, 33264, 166320, 665280, 1995840, 3991680, 1287, 10296, 72072, 432432, 2162160, 8648640, 25945920, 51891840
Offset: 6

Views

Author

N. J. A. Sloane, Jan 30 2016

Keywords

Examples

			Triangle begins:
    6;
   21,   42;
   56,  168,  336;
  126,  504, 1512,  3024;
  252, 1260, 5040, 15120, 30240;
  ...
		

Crossrefs

Row sums give A268219.
Triangles in this series: A119741, A268217, A268221, A268222, A268223.

Programs

  • Mathematica
    i = 5; Table[ Table[Binomial[n, i] FactorialPower[n - i, k], {k, 0,
    n - i - 1}], {n, 2, 13}] // Grid (* Geoffrey Critzer, Feb 19 2017 *)

Extensions

Title clarified and more terms added by Geoffrey Critzer, Feb 19 2017

A268218 a(n) = (n!/3!)*Sum(1/k!,k=1..n-3).

Original entry on oeis.org

0, 0, 0, 0, 4, 30, 200, 1435, 11536, 103908, 1039200, 11431365, 137176600, 1783296086, 24966145568, 374492183975, 5991874944160, 101861874051400, 1833513732926016, 34836760925595273, 696735218511906600, 14631439588750039930, 321891670952500880000, 7403508431907520241771
Offset: 0

Views

Author

N. J. A. Sloane, Jan 30 2016

Keywords

Crossrefs

For others in this series, see A038156, A038158, A268219, A268220.

Programs

  • Maple
    g:=(r,n)->(n!/r!)*add(1/k!,k=1..n-r);
    g2:=r->[seq(g(r,n),n=0..30)];
    g2(3);
  • PARI
    a(n) = (n!/3!)*sum(k=1, n-3, 1/k!); \\ Michel Marcus, Jan 30 2016

A268220 a(n) = (n!/5!)*Sum(1/k!,k=1..n-5).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 6, 63, 560, 5166, 51912, 571494, 6858720, 89164647, 1248307060, 18724608903, 299593746816, 5093093702060, 91675686645648, 1741838046278940, 34836760925594304, 731571979437500733, 16094583547625042460, 370175421595376010229, 8884210118289024288000
Offset: 0

Views

Author

N. J. A. Sloane, Jan 30 2016

Keywords

Crossrefs

For others in this series, see A038156, A038158, A268218, A268219.

Programs

  • Maple
    g:=(r,n)->(n!/r!)*add(1/k!,k=1..n-r);
    g2:=r->[seq(g(r,n),n=0..30)];
    g2(5);
  • PARI
    a(n) = (n!/5!)*sum(k=1, n-5, 1/k!); \\ Michel Marcus, Jan 30 2016
Showing 1-4 of 4 results.