A268292 a(n) is the total number of isolated 1's at the boundary between n-th and (n-1)-th iterations in the pattern of A267489.
0, 0, 0, 0, 0, 0, 0, 1, 3, 5, 7, 9, 11, 14, 18, 22, 26, 30, 34, 39, 45, 51, 57, 63, 69, 76, 84, 92, 100, 108, 116, 125, 135, 145, 155, 165, 175, 186, 198, 210, 222, 234, 246, 259, 273, 287, 301, 315, 329, 344, 360, 376, 392, 408, 424, 441
Offset: 0
Links
- Kival Ngaokrajang, Illustration of initial terms, Continuously concatenate pattern
Programs
-
PARI
a = 3; d1 = 2; print1("0, 0, 0, 0, 0, 0, 0, 1, 3, "); for (n = 3,100, d2 = 0; if (Mod(n,6)==1 || Mod(n,6)==2, d2 = 1); d1 = d1 + d2; a = a + d1; print1(a, ", "))
Formula
Empirical g.f.: x^7 / ((1-x)^3*(1-x+x^2)*(1+x+x^2)). - Colin Barker, Jan 31 2016
For n>0: a(n) = floor((n-3)^2/12) + floor((n-4)^2/12). - Hoang Xuan Thanh, Jun 02 2025
Comments