cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268316 a(n) is the number of Dyck paths of length 4n and height n.

Original entry on oeis.org

1, 1, 7, 57, 484, 4199, 36938, 328185, 2937932, 26457508, 239414383, 2175127695, 19827974412, 181266501290, 1661241473220, 15257624681145, 140400178555644, 1294141164447692, 11946771748196428, 110435320379615620, 1022108852175416720, 9470416604629933935
Offset: 0

Views

Author

Gheorghe Coserea, Feb 01 2016

Keywords

Comments

Equivalently, a(n) is the number of rooted plane trees with 2n+1 nodes and height n.

Examples

			For n = 2 the a(2) = 7 solutions are
              /\/\/\       |
LLRLRLRR     /      \     /|\
................................
                /\        /|\
LRLLRRLR     /\/  \/\      |
................................
              /\  /\       /\
LLRRLLRR     /  \/  \     /  \
................................
              /\           /|\
LLRRLRLR     /  \/\/\     /
................................
                  /\      /|\
LRLRLLRR     /\/\/  \        \
................................
              /\/\         /\
LLRLRRLR     /    \/\     /\
................................
                /\/\       /\
LRLLRLRR     /\/    \       /\
		

Crossrefs

Column k=2 of A289481.

Programs

  • Magma
    [Binomial(4*n, n)*2*(2*n+3)*(2*n^2+1)/((3*n+1)*(3*n+2)*(3*n+3)): n in [1..30]]; // Vincenzo Librandi, Feb 04 2016
  • Mathematica
    Table[Binomial[4 n, n] 2 (2 n + 3) (2 n^2 + 1) / ((3 n + 1) (3 n + 2) (3 n + 3)), {n, 1, 25}] (* Vincenzo Librandi, Feb 04 2016 *)
    Drop[CoefficientList[Series[-((-1 + HypergeometricPFQ[{-3/4, -1/2, -1/4}, {1/3, 2/3}, 256 x/27])/(4x)) + 4/5 x HypergeometricPFQ[{5/4, 3/2, 7/4}, {7/3, 8/3}, 256 x/27] + 8/3 x^2 HypergeometricPFQ[{9/4, 5/2, 11/4}, {10/3, 11/3}, 256x/27], {x, 0, 20}], x], 1] (* Benedict W. J. Irwin, Aug 09 2016 *)
  • PARI
    a(n) = binomial(4*n,n) * 2*(2*n+3)*(2*n^2+1)/((3*n+1)*(3*n+2)*(3*n+3));
    vector(21, i, a(i))
    

Formula

a(n) = T(2n,n), where T(n,k) is defined by A080936.
a(n) = binomial(4*n,n) * 2*(2*n+3)*(2*n^2+1)/((3*n+1)*(3*n+2)*(3*n+3)).
a(n) ~ K * A268315^n / sqrt(n), where K = 8/27 * sqrt(2/(3*Pi)) = 0.13649151584...
G.f.: -((3F2(-3/4, -1/2, -1/4; 1/3, 2/3; 256*x/27)-1)/(4*x)) + 4/5*x*3F2(5/4, 3/2, 7/4; 7/3, 8/3; 256*x/27) + 8/3*x^2*3F2(9/4, 5/2, 11/4; 10/3, 11/3; 256*x/27). - Benedict W. J. Irwin, Aug 09 2016
Recurrence: 3*(n+1)*(2*n + 1)*(3*n + 1)*(3*n + 2)*(2*n^2 - 4*n + 3)*a(n) = 8*(2*n - 1)*(2*n + 3)*(4*n - 3)*(4*n - 1)*(2*n^2 + 1)*a(n-1). - Vaclav Kotesovec, Aug 10 2016

Extensions

Added a(0)=1, adjusted b-file - N. J. A. Sloane, Dec 22 2016