cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A268320 Number of length-(n+1) 0..n arrays with new values introduced in sequential order, and with new repeated values introduced in sequential order, both starting with zero.

Original entry on oeis.org

2, 4, 11, 33, 114, 435, 1829, 8377, 41504, 220958, 1256927, 7602273, 48676925, 328685063, 2332565079, 17344752142, 134774766541, 1091701884974, 9198355199792, 80459135884925, 729337831748484, 6840215461149149
Offset: 1

Views

Author

R. H. Hardin, Feb 01 2016

Keywords

Comments

Diagonal of A268327.

Examples

			Some solutions for n=9
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....0....0....1....1....1....0....1....1....1....1....0....1....1....1....1
..2....0....1....0....2....2....1....2....2....2....2....0....2....2....2....2
..3....1....2....2....0....3....2....3....1....3....3....0....3....1....3....3
..4....2....1....0....0....2....1....0....3....4....4....1....4....3....4....2
..0....1....2....3....3....4....2....4....1....5....2....0....1....4....5....3
..1....3....3....4....4....3....1....0....0....6....5....2....2....0....6....2
..5....1....2....3....5....4....1....4....0....1....3....1....0....4....0....4
..2....2....0....2....3....3....2....5....3....6....6....3....5....1....4....5
..3....4....2....5....6....4....1....4....1....7....5....0....3....0....7....6
		

Crossrefs

Cf. A268327.

A268321 Number of length-(n+1) 0..2 arrays with new values introduced in sequential order, and with new repeated values introduced in sequential order, both starting with zero.

Original entry on oeis.org

2, 4, 10, 25, 66, 177, 485, 1348, 3797, 10812, 31076, 90015, 262432, 769199, 2264475, 6690450, 19825011, 58884842, 175238730, 522316253, 1558776782, 4656673837, 13922711281, 41654206400, 124688153137, 373402997944, 1118614401040
Offset: 1

Views

Author

R. H. Hardin, Feb 01 2016

Keywords

Examples

			Some solutions for n=10:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..0....0....1....0....0....1....0....1....0....0....0....0....0....1....1....1
..1....0....0....1....0....0....1....2....1....1....1....1....1....0....0....2
..2....0....2....1....1....2....1....0....2....1....1....0....2....2....1....1
..1....0....0....2....1....0....1....0....1....0....0....1....0....0....2....0
..2....1....0....1....1....1....1....0....1....2....1....1....2....0....0....1
..1....1....2....1....1....2....1....1....2....2....0....1....1....2....1....0
..1....0....0....0....1....0....0....2....0....0....0....2....2....1....2....0
..2....1....0....2....2....2....0....0....0....2....1....2....0....1....1....0
..1....2....2....1....0....0....2....1....1....0....2....1....0....2....2....2
..1....1....1....1....0....2....2....0....1....1....0....2....1....0....1....0
		

Crossrefs

Column 2 of A268327.

Formula

Empirical: a(n) = 7*a(n-1) - 14*a(n-2) + 21*a(n-4) - 7*a(n-5) - 6*a(n-6).
Empirical g.f.: x*(2 - 10*x + 10*x^2 + 11*x^3 - 11*x^4 - 5*x^5) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 - 3*x)*(1 - 2*x - x^2)). - Colin Barker, Jan 13 2019

A268322 Number of length-(n+1) 0..3 arrays with new values introduced in sequential order, and with new repeated values introduced in sequential order, both starting with zero.

Original entry on oeis.org

2, 4, 11, 32, 102, 337, 1148, 3984, 14030, 49973, 179735, 652010, 2383857, 8779485, 32555471, 121497802, 456178652, 1722502343, 6538543106, 24942393310, 95581407132, 367817900179, 1420912978925, 5508514801624, 21423891255215
Offset: 1

Views

Author

R. H. Hardin, Feb 01 2016

Keywords

Comments

Column 3 of A268327.

Examples

			Some solutions for n=10
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....0....0....1....1....1....1....1....0....1....1....1....0....0....0
..2....0....0....0....0....2....2....2....0....1....2....2....2....1....0....1
..1....1....1....0....2....3....1....1....0....2....1....0....1....2....1....1
..3....2....2....1....1....2....0....0....0....3....3....0....2....0....1....1
..2....1....0....0....2....0....3....2....1....1....0....2....0....2....2....1
..3....2....3....2....0....1....2....3....0....0....0....1....1....3....0....1
..0....3....0....3....2....0....0....0....1....1....1....2....0....2....1....2
..0....0....0....1....1....3....1....1....1....2....1....0....1....1....1....3
..0....0....0....3....2....0....3....2....0....0....0....3....0....2....0....0
..1....1....0....2....0....0....2....1....2....0....3....1....1....0....0....0
		

Crossrefs

Cf. A268327.

Formula

Empirical: a(n) = 15*a(n-1) -83*a(n-2) +181*a(n-3) +20*a(n-4) -632*a(n-5) +445*a(n-6) +849*a(n-7) -637*a(n-8) -673*a(n-9) +208*a(n-10) +260*a(n-11) +48*a(n-12)

A268323 Number of length-(n+1) 0..4 arrays with new values introduced in sequential order, and with new repeated values introduced in sequential order, both starting with zero.

Original entry on oeis.org

2, 4, 11, 33, 113, 418, 1644, 6729, 28306, 121290, 526528, 2307684, 10189912, 45272176, 202209217, 907511800, 4091094290, 18521091171, 84191453893, 384234672892, 1760416403153, 8096423923987, 37376700482989, 173184754445281
Offset: 1

Views

Author

R. H. Hardin, Feb 01 2016

Keywords

Comments

Column 4 of A268327.

Examples

			Some solutions for n=10
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....1....0....1....1....1....1....0....1....0....0....1....0....1....1
..2....0....2....1....2....0....0....0....0....0....0....1....0....0....2....2
..0....2....0....0....1....2....0....0....1....2....1....2....1....1....0....0
..1....3....0....1....3....3....2....2....2....3....1....3....2....1....1....0
..0....2....3....2....2....2....3....1....1....4....1....1....0....2....0....0
..3....4....0....0....3....4....0....3....2....2....2....2....1....2....3....3
..4....0....3....2....2....0....0....1....3....0....1....1....2....3....1....1
..0....2....0....1....1....1....0....0....4....3....1....0....3....4....0....4
..1....1....0....1....4....4....4....0....0....1....2....1....4....3....4....0
..4....0....4....0....3....3....2....4....4....0....0....2....3....4....0....3
		

Crossrefs

Cf. A268327.

Formula

Empirical: a(n) = 30*a(n-1) -383*a(n-2) +2665*a(n-3) -10530*a(n-4) +20413*a(n-5) +1810*a(n-6) -87142*a(n-7) +111699*a(n-8) +116304*a(n-9) -292159*a(n-10) -83751*a(n-11) +371556*a(n-12) +93673*a(n-13) -257980*a(n-14) -122812*a(n-15) +60076*a(n-16) +59180*a(n-17) +15912*a(n-18) +1440*a(n-19)

A268324 Number of length-(n+1) 0..5 arrays with new values introduced in sequential order, and with new repeated values introduced in sequential order, both starting with zero.

Original entry on oeis.org

2, 4, 11, 33, 114, 434, 1806, 8052, 37851, 184910, 928406, 4752055, 24656385, 129183323, 681695654, 3616896810, 19273025959, 103063766844, 552827229141, 2973435835535, 16033214329525, 86659280236610, 469464972714177
Offset: 1

Views

Author

R. H. Hardin, Feb 01 2016

Keywords

Comments

Column 5 of A268327.

Examples

			Some solutions for n=10
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..0....0....0....0....1....0....0....0....0....0....0....1....0....0....0....0
..1....0....0....1....0....1....1....1....0....1....1....2....1....1....1....1
..1....1....0....2....1....2....2....2....1....1....2....0....2....1....2....2
..2....1....1....1....0....1....0....1....2....2....1....0....0....1....3....1
..3....1....2....1....0....2....3....0....0....2....3....3....1....1....4....3
..2....2....3....2....2....3....2....1....2....2....4....1....0....0....3....2
..3....3....0....1....0....4....1....1....1....2....3....2....1....1....0....4
..0....2....1....3....1....1....2....3....3....3....5....4....1....2....4....3
..2....4....3....2....2....3....4....4....1....3....0....5....0....2....1....0
..3....1....2....0....1....1....0....5....3....3....2....2....0....3....4....3
		

Crossrefs

Cf. A268327.

Formula

Empirical: a(n) = 52*a(n-1) -1217*a(n-2) +16835*a(n-3) -151495*a(n-4) +913335*a(n-5) -3595675*a(n-6) +7981675*a(n-7) -1977562*a(n-8) -42002621*a(n-9) +99434620*a(n-10) +11892832*a(n-11) -369952047*a(n-12) +312076090*a(n-13) +749849987*a(n-14) -1016956079*a(n-15) -1168160519*a(n-16) +1710725071*a(n-17) +1710086539*a(n-18) -1618310265*a(n-19) -2126314760*a(n-20) +451613225*a(n-21) +1594319858*a(n-22) +601430554*a(n-23) -317807648*a(n-24) -383121792*a(n-25) -161486112*a(n-26) -36051552*a(n-27) -4243968*a(n-28) -207360*a(n-29)

A268325 Number of length-(n+1) 0..6 arrays with new values introduced in sequential order, and with new repeated values introduced in sequential order, both starting with zero.

Original entry on oeis.org

2, 4, 11, 33, 114, 435, 1828, 8347, 40967, 213476, 1167038, 6620563, 38616800, 229908144, 1389394409, 8488437842, 52275301038, 323844494931, 2015202856151, 12583558074610, 78792289312786, 494476637793884, 3109144620092506
Offset: 1

Views

Author

R. H. Hardin, Feb 01 2016

Keywords

Comments

Column 6 of A268327.

Examples

			Some solutions for n=9
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....1....1....1....1....1....1....1....1....0....1....0....1....0....1
..2....2....2....2....2....0....0....2....0....2....1....2....1....2....1....2
..0....3....3....3....3....2....0....3....0....0....2....3....0....3....1....1
..3....2....4....4....2....3....0....4....2....2....3....4....2....1....0....0
..4....4....2....0....0....4....2....0....0....3....4....3....3....2....1....3
..3....0....5....3....0....5....3....4....0....0....3....2....0....0....2....4
..0....0....3....2....3....3....0....2....1....3....5....1....2....4....1....3
..1....5....4....5....1....0....2....0....3....1....0....2....3....1....1....4
..4....3....5....1....3....1....0....0....0....4....1....1....4....0....2....1
		

Crossrefs

Cf. A268327.

Formula

Empirical: a(n) = 85*a(n-1) -3366*a(n-2) +82295*a(n-3) -1386925*a(n-4) +17019210*a(n-5) -156331765*a(n-6) +1084941555*a(n-7) -5636724036*a(n-8) +21085378015*a(n-9) -50325001951*a(n-10) +37617575820*a(n-11) +213182974620*a(n-12) -813092997160*a(n-13) +770630574930*a(n-14) +2257030578230*a(n-15) -6653453677281*a(n-16) +247414659915*a(n-17) +21051181958044*a(n-18) -16718457793465*a(n-19) -43997340297789*a(n-20) +53879923261450*a(n-21) +76684670354671*a(n-22) -100035381928785*a(n-23) -126944916371090*a(n-24) +114738194825025*a(n-25) +187188954935145*a(n-26) -51075152814970*a(n-27) -196841758256594*a(n-28) -63278370502380*a(n-29) +98176306220916*a(n-30) +99869982678040*a(n-31) +19690930153560*a(n-32) -26581558465280*a(n-33) -25769657503680*a(n-34) -11894859049920*a(n-35) -3433657832064*a(n-36) -649913978880*a(n-37) -78779602944*a(n-38) -5563468800*a(n-39) -174182400*a(n-40)

A268326 Number of length-(n+1) 0..7 arrays with new values introduced in sequential order, and with new repeated values introduced in sequential order, both starting with zero.

Original entry on oeis.org

2, 4, 11, 33, 114, 435, 1829, 8376, 41466, 220115, 1242614, 7395663, 45999012, 296480813, 1965371333, 13314182333, 91697130971, 639451012407, 4501167824269, 31908164747227, 227399949031725, 1627202389749190, 11680282747792917
Offset: 1

Views

Author

R. H. Hardin, Feb 01 2016

Keywords

Comments

Column 7 of A268327.

Examples

			Some solutions for n=9
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....1....1....1....0....1....1....1....1....1....1....0....1....1....0
..2....0....2....0....2....1....2....0....2....2....2....0....1....2....0....1
..3....1....1....1....3....1....3....0....1....1....3....0....2....3....2....0
..4....2....3....2....4....0....1....1....0....3....1....0....3....1....3....2
..5....3....1....3....2....2....2....1....3....4....3....0....2....2....2....0
..1....0....4....2....1....3....4....2....0....0....0....2....4....1....4....2
..4....2....1....4....0....4....2....3....3....5....4....0....3....4....2....1
..5....0....5....0....0....1....3....4....2....3....1....3....5....5....1....0
..6....4....4....5....1....5....0....2....3....1....3....4....3....4....2....3
		

Crossrefs

Cf. A268327.

Formula

Empirical recurrence of order 54 (see link above)
Showing 1-7 of 7 results.