A268336 a(n) = A174824(n)/n, where A174824(n) = lcm(A002322(n), n) and A002322(n) is the Carmichael lambda function (also known as the reduced totient function or the universal exponent of n).
1, 1, 2, 1, 4, 1, 6, 1, 2, 2, 10, 1, 12, 3, 4, 1, 16, 1, 18, 1, 2, 5, 22, 1, 4, 6, 2, 3, 28, 2, 30, 1, 10, 8, 12, 1, 36, 9, 4, 1, 40, 1, 42, 5, 4, 11, 46, 1, 6, 2, 16, 3, 52, 1, 4, 3, 6, 14, 58, 1, 60, 15, 2, 1, 12, 5, 66, 4, 22, 6, 70, 1, 72, 18, 4, 9, 30, 2, 78, 1, 2
Offset: 1
Programs
-
Magma
[1] cat [Lcm(n, CarmichaelLambda(n))/n: n in [2..100]]: // Feb 03 2016
-
Mathematica
Table[LCM[n, CarmichaelLambda@ n]/n, {n, 100}] (* Michael De Vlieger, Feb 03 2016, after T. D. Noe at A174824 *)
-
PARI
a(n)=my(ps); ps=factor(n)[, 1]~; m = n; for(k=1, #ps, m=lcm(m, ps[k]-1)); m/n \\ Michel Marcus, Feb 21 2016
-
PARI
apply( {A268336(n)=lcm(lcm([p-1|p<-factor(n)[,1]]),n)/n}, [1..99]) \\ [...] = znstar(n)[2], but 3x faster. - M. F. Hasler, Nov 13 2019
Formula
a(n) = A174824(n)/n.
a(A124240(n)) = 1. - Michel Marcus, Feb 21 2016
Extensions
More terms from Vincenzo Librandi, Feb 03 2016