cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268349 Expansion of (1 + x - x^2 - 6*x^3)/(1 - x - 2*x^2 - 3*x^3 - 4*x^4).

Original entry on oeis.org

1, 2, 3, 4, 20, 45, 109, 275, 708, 1765, 4442, 11196, 28207, 70985, 178755, 450130, 1133423, 2853888, 7186144, 18094709, 45562353, 114725755, 288879164, 727396569, 1831581574, 4611915224, 11612784735, 29240946181, 73628587619, 185396495082
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 02 2016

Keywords

Comments

In general, the ordinary generating function for the recurrence relation b(n) = b(n - 1) + 2*b(n - 2) + 3*b(n - 3) + 4*b(n - 4) + ... + k*b(n - k), with n > k - 1 and initial values b(i-1) = i for i = 1..k, is (Sum_{m = 0..(k - 1)} (-m^3 - 3*m^2 + 4*m + 6)*x^m/6)/(1 - Sum_{m = 1..k} m*x^m).

Crossrefs

Programs

  • Magma
    [n le 4 select n else Self(n-1)+2*Self(n-2)+3*Self(n-3)+4*Self(n-4): n in [1..35]]; // Vincenzo Librandi, Feb 04 2016
  • Mathematica
    LinearRecurrence[{1, 2, 3, 4}, {1, 2, 3, 4}, 30]
    CoefficientList[Series[(1 + x - x^2 - 6 x^3) / (1 - x - 2 x^2 - 3 x^3 - 4 x^4), {x, 0, 33}], x] (* Vincenzo Librandi, Feb 04 2016 *)
  • PARI
    Vec((1+x-x^2-6*x^3)/(1-x-2*x^2-3*x^3-4*x^4) + O(x^40)) \\ Michel Marcus, Feb 02 2016
    

Formula

G.f.: (1 + x - x^2 - 6*x^3)/(1 - x - 2*x^2 - 3*x^3 - 4*x^4).