cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268355 Highest power of 8 dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 64, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Tom Edgar, Feb 02 2016

Keywords

Comments

The generalized binomial coefficients produced by this sequence provide an analog to Kummer's Theorem using arithmetic in base 8.

Examples

			Since 16 = 8 * 2, a(16) = 8. Likewise, since 8 does not divide 15, a(15) = 1.
		

Crossrefs

Programs

  • Maple
    seq(8^floor(padic:-ordp(n,2)/3), n=1..100); # Robert Israel, Feb 03 2016
  • Mathematica
    8^Table[IntegerExponent[n, 8], {n, 150}] (* Vincenzo Librandi, Feb 03 2016 *)
  • PARI
    a(n) = 8^valuation(n, 8); \\ Michel Marcus, Feb 05 2016
    
  • Python
    def A268355(n): return (m:=(~n&n-1))+1>>(m.bit_length()%3) # Chai Wah Wu, Jul 09 2022
  • Sage
    [8^valuation(i, 8) for i in [1..100]]
    

Formula

a(n) = 8^valuation(n,8).
a(n) = 8^A244413(n).
G.f.: Sum_{m>=0} 8^m * Sum_{j=1..7} x^(j*8^m)/(1-x^(8^(m+1))). - Robert Israel, Feb 03 2016
From Amiram Eldar, Dec 31 2022: (Start)
Multiplicative with a(2^e) = 2^(3*floor(e/3)), and a(p^e) = 1 if p >= 3.
Dirichlet g.f.: zeta(s)*(8^s-1)/(8^s-8).
Sum_{k=1..n} a(k) ~ (7/(24*log(2)))*n*log(n) + (9/16 + 7*(gamma-1)/(24*log(2)))*n, where gamma is Euler's constant (A001620). (End)

Extensions

Keyword:mult added by Andrew Howroyd, Jul 20 2018