A268400 Number of North-East lattice paths from (0,0) to (n,n) that bounce off the diagonal y = x to the right exactly twice.
1, 5, 23, 99, 413, 1691, 6842, 27464, 109631, 435887, 1728018, 6835668, 26996393, 106486529, 419639903, 1652533719, 6504159137, 25589302163, 100646529977, 395775842389, 1556107102849, 6117771240251, 24050813530815, 94550689834203, 371715533473021, 1461430355605367, 5746128800657639, 22594839306797223
Offset: 3
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 3..1000
- Ran Pan and Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
Programs
-
Mathematica
Rest[Rest[Rest[CoefficientList[Series[-((-1 + Sqrt[1 - 4 x])^3 x (-1 + Sqrt[1-4 x] + 2 x))/(2 (1 - Sqrt[1 - 4 x] + (-5 + Sqrt[1 - 4 x]) x)^3), {x, 0, 40}], x]]]] (* Vincenzo Librandi, Feb 28 2016 *)
-
Maxima
a(n):=((sum((m+2)*(sum((m^2+(3-2*k)*m+k^2-3*k+2)*binomial(m-k,k),k,0,m/2)) *binomial(2*n-m-5,n-m-3),m,1,n-3))+2*binomial(2*n-4,n-2))/(2*n-2); /* Vladimir Kruchinin, Feb 28 2016 */
Formula
G.f.: -((-1 + f(x))^3*x*(-1 + f(x) + 2*x))/(2*(1 - f(x) + (-5 + f(x))*x)^3), where f(x) = sqrt(1 - 4*x).
a(n) = ((Sum_{m=1..n-3}((m+2)*(Sum_{k=0..m/2}((m^2+(3-2*k)*m+k^2-3*k+2)*binomial(m-k,k)))*binomial(2*n-m-5,n-m-3)))+2*binomial(2*n-4,n-2))/(2*n-2), n>2. - Vladimir Kruchinin, Feb 28 2016
a(n) ~ 7*2^(2*n+2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Feb 28 2016
D-finite with recurrence (n-1)*(9*n-56)*a(n) +(-31*n^2+203*n-16)*a(n-1) +(-193*n^2+1371*n-2138)*a(n-2) +3*(217*n^2-1497*n+2274)*a(n-3) +2*(41*n-94)*(2*n-5)*a(n-4)=0. - R. J. Mathar, Jul 24 2022
Comments