cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268400 Number of North-East lattice paths from (0,0) to (n,n) that bounce off the diagonal y = x to the right exactly twice.

Original entry on oeis.org

1, 5, 23, 99, 413, 1691, 6842, 27464, 109631, 435887, 1728018, 6835668, 26996393, 106486529, 419639903, 1652533719, 6504159137, 25589302163, 100646529977, 395775842389, 1556107102849, 6117771240251, 24050813530815, 94550689834203, 371715533473021, 1461430355605367, 5746128800657639, 22594839306797223
Offset: 3

Views

Author

Ran Pan, Feb 03 2016

Keywords

Comments

This sequence is related to paired pattern P_2 in Pan and Remmel's link.

Crossrefs

Programs

  • Mathematica
    Rest[Rest[Rest[CoefficientList[Series[-((-1 + Sqrt[1 - 4 x])^3 x (-1 + Sqrt[1-4 x] + 2 x))/(2 (1 - Sqrt[1 - 4 x] + (-5 + Sqrt[1 - 4 x]) x)^3), {x, 0, 40}], x]]]] (* Vincenzo Librandi, Feb 28 2016 *)
  • Maxima
    a(n):=((sum((m+2)*(sum((m^2+(3-2*k)*m+k^2-3*k+2)*binomial(m-k,k),k,0,m/2)) *binomial(2*n-m-5,n-m-3),m,1,n-3))+2*binomial(2*n-4,n-2))/(2*n-2); /* Vladimir Kruchinin, Feb 28 2016 */

Formula

G.f.: -((-1 + f(x))^3*x*(-1 + f(x) + 2*x))/(2*(1 - f(x) + (-5 + f(x))*x)^3), where f(x) = sqrt(1 - 4*x).
a(n) = ((Sum_{m=1..n-3}((m+2)*(Sum_{k=0..m/2}((m^2+(3-2*k)*m+k^2-3*k+2)*binomial(m-k,k)))*binomial(2*n-m-5,n-m-3)))+2*binomial(2*n-4,n-2))/(2*n-2), n>2. - Vladimir Kruchinin, Feb 28 2016
a(n) ~ 7*2^(2*n+2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Feb 28 2016
D-finite with recurrence (n-1)*(9*n-56)*a(n) +(-31*n^2+203*n-16)*a(n-1) +(-193*n^2+1371*n-2138)*a(n-2) +3*(217*n^2-1497*n+2274)*a(n-3) +2*(41*n-94)*(2*n-5)*a(n-4)=0. - R. J. Mathar, Jul 24 2022