cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268407 Number of North-East lattice paths that do not bounce off the diagonal y = x to the right.

Original entry on oeis.org

1, 2, 5, 15, 48, 160, 548, 1914, 6785, 24335, 88109, 321521, 1181039, 4362855, 16195747, 60379623, 225955264, 848432824, 3195394520, 12067450014, 45685766306, 173350890788, 659126407978, 2510942564760, 9582235262428, 36627111558850, 140214938146148
Offset: 0

Views

Author

Ran Pan, Feb 04 2016

Keywords

Comments

This sequence is related to paired pattern P_2 in Pan and Remmel's link.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[2 (-1 + Sqrt[1 - 4 x] + x) / (1 - Sqrt[1 - 4 x] + (-5 + Sqrt[1 - 4 x]) x), {x, 0, 33}], x] (* Vincenzo Librandi, Feb 04 2016 *)
  • Maxima
    a(n):=sum((k+1)*fib(k)*binomial(2*n-k,n-k),k,0,n)/(n+1)+binomial(2*n,n)/(n+1); /* Vladimir Kruchinin, Feb 27 2016 */

Formula

G.f.: 2 (-1 + f(x) + x)/(1 - f(x) + (-5 + f(x))*x), where f(x) = sqrt(1 - 4*x).
a(n):= Sum_{k=0..n}((k+1)*fib(k)*binomial(2*n-k,n-k))/(n+1) + C(n), where fib(n) - Fibonacci numbers, C(n) - Catalan numbers. - Vladimir Kruchinin, Feb 27 2016
a(n) ~ 13*4^n/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Feb 27 2016