cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268410 a(n) = a(n - 1) + a(n - 2) + a(n - 3) for n>2, a(0)=5, a(1)=7, a(2)=9.

Original entry on oeis.org

5, 7, 9, 21, 37, 67, 125, 229, 421, 775, 1425, 2621, 4821, 8867, 16309, 29997, 55173, 101479, 186649, 343301, 631429, 1161379, 2136109, 3928917, 7226405, 13291431, 24446753, 44964589, 82702773, 152114115, 279781477, 514598365, 946493957
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 04 2016

Keywords

Comments

Tribonacci sequence beginning 5, 7, 9.
In general, the ordinary generating function for the recurrence relation b(n) = b(n-1) + b(n-2) + b(n-3), with n>2 and b(0)=k, b(1)=m, b(2)=q, is (k + (m-k)*x + (q-m-k)*x^2)/(1 - x - x^2 - x^3).

Crossrefs

Cf. similar sequences with initial values (p,q,r): A000073 (0,0,1), A081172 (1,1,0), A001590 (0,1,0; also 1,2,3), A214899 (2,1,2), A001644 (3,1,3), A145027 (2,3,4), A000213 (1,1,1), A141036 (2,1,1), A141523 (3,1,1), A214727 (1,2,2), A214825 (1,3,3), A214826 (1,4,4), A214827 (1,5,5), A214828 (1,6,6), A214829 (1,7,7), A214830 (1,8,8), A214831 (1,9,9).

Programs

  • GAP
    a:=[5,7,9];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 23 2019
  • Magma
    I:=[5,7,9]; [n le 3 select I[n] else Self(n-1)+Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 04 2016
    
  • Mathematica
    LinearRecurrence[{1, 1, 1}, {5, 7, 9}, 40]
    RecurrenceTable[{a[0]==5, a[1]==7, a[2]==9, a[n]==a[n-1]+a[n-2]+a[n-3]}, a, {n, 40}]
  • PARI
    my(x='x+O('x^40)); Vec((5+2*x-3*x^2)/(1-x-x^2-x^3)) \\ G. C. Greubel, Apr 23 2019
    
  • Sage
    ((5+2*x-3*x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 23 2019
    

Formula

G.f.: (5 + 2*x - 3*x^2)/(1 - x - x^2 - x^3).
a(n) = 3*K(n) - 4*T(n+1) + 8*T(n), where K(n) = A001644(n) and T(n) =A000073(n+1). - G. C. Greubel, Apr 23 2019