A268410 a(n) = a(n - 1) + a(n - 2) + a(n - 3) for n>2, a(0)=5, a(1)=7, a(2)=9.
5, 7, 9, 21, 37, 67, 125, 229, 421, 775, 1425, 2621, 4821, 8867, 16309, 29997, 55173, 101479, 186649, 343301, 631429, 1161379, 2136109, 3928917, 7226405, 13291431, 24446753, 44964589, 82702773, 152114115, 279781477, 514598365, 946493957
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Tribonacci Number
- Index entries for linear recurrences with constant coefficients, signature (1,1,1)
Crossrefs
Cf. similar sequences with initial values (p,q,r): A000073 (0,0,1), A081172 (1,1,0), A001590 (0,1,0; also 1,2,3), A214899 (2,1,2), A001644 (3,1,3), A145027 (2,3,4), A000213 (1,1,1), A141036 (2,1,1), A141523 (3,1,1), A214727 (1,2,2), A214825 (1,3,3), A214826 (1,4,4), A214827 (1,5,5), A214828 (1,6,6), A214829 (1,7,7), A214830 (1,8,8), A214831 (1,9,9).
Programs
-
GAP
a:=[5,7,9];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 23 2019
-
Magma
I:=[5,7,9]; [n le 3 select I[n] else Self(n-1)+Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 04 2016
-
Mathematica
LinearRecurrence[{1, 1, 1}, {5, 7, 9}, 40] RecurrenceTable[{a[0]==5, a[1]==7, a[2]==9, a[n]==a[n-1]+a[n-2]+a[n-3]}, a, {n, 40}]
-
PARI
my(x='x+O('x^40)); Vec((5+2*x-3*x^2)/(1-x-x^2-x^3)) \\ G. C. Greubel, Apr 23 2019
-
Sage
((5+2*x-3*x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 23 2019
Formula
G.f.: (5 + 2*x - 3*x^2)/(1 - x - x^2 - x^3).
a(n) = 3*K(n) - 4*T(n+1) + 8*T(n), where K(n) = A001644(n) and T(n) =A000073(n+1). - G. C. Greubel, Apr 23 2019
Comments