A268466 Smallest m > 1 such that m^m == 1 (mod n).
2, 3, 2, 5, 4, 7, 6, 9, 8, 11, 5, 13, 3, 9, 4, 17, 4, 19, 9, 21, 8, 5, 22, 25, 24, 3, 26, 9, 7, 31, 6, 33, 10, 35, 6, 37, 9, 9, 8, 41, 10, 43, 6, 5, 8, 47, 46, 49, 18, 51, 4, 9, 13, 55, 12, 9, 20, 7, 29, 61, 15, 35, 8, 65, 8, 25, 22, 69, 22, 51, 5, 73, 18, 9, 26, 9, 12, 79, 24, 81
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A065190.
Programs
-
Maple
f:= proc(n) local k; for k from 2 do if igcd(k,n) = 1 and k &^ k mod n = 1 then return k fi od end proc: 2,seq(f(n),n=2..100); # Robert Israel, Feb 05 2016
-
Mathematica
{2}~Join~Table[SelectFirst[Range[2, 1000], Mod[#^#, n] == 1 &], {n, 2, 80}] (* Michael De Vlieger, Feb 05 2016, corrected by Harvey P. Dale, Sep 10 2021 *) smg1[n_]:=Module[{m=2},While[PowerMod[m,m,n]!=1,m++];m]; Join[{2},Array[ smg1,80,2]] (* Harvey P. Dale, Aug 13 2021 *)
-
PARI
a(n) = {my(m = 2); while (Mod(m,n)^m != Mod(1, n), m++); m;} \\ Michel Marcus, Feb 05 2016
Extensions
More terms from Michel Marcus, Feb 05 2016
Comments