A268586 Expansion of x^3*(3*x - 2)/(2*x - 1)^3.
0, 0, 0, 2, 9, 30, 88, 240, 624, 1568, 3840, 9216, 21760, 50688, 116736, 266240, 602112, 1351680, 3014656, 6684672, 14745600, 32374784, 70778880, 154140672, 334495744, 723517440, 1560281088, 3355443200, 7197425664, 15401484288, 32883343360, 70061654016
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Ran Pan, Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
- Index entries for linear recurrences with constant coefficients, signature (6,-12,8).
Programs
-
Mathematica
CoefficientList[Series[(x^3 (3 x - 2))/(2 x - 1)^3, {x, 0, 30}], x] (* Michael De Vlieger, Feb 08 2016 *) LinearRecurrence[{6,-12,8},{0,0,0,2,9},40] (* Harvey P. Dale, Apr 25 2020 *)
-
PARI
concat(vector(3), Vec(x^3*(2-3*x)/(1-2*x)^3 + O(x^100))) \\ Colin Barker, Feb 08 2016
Formula
G.f.: x^3*(3*x - 2)/(2*x - 1)^3.
From Colin Barker, Feb 08 2016: (Start)
a(n) = 2^(n-5)*(n-2)*(n+5) for n>1.
a(n) = 6*a(n-1)-12*a(n-2)+8*a(n-3) for n>4.
(End)
Comments