cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A381299 Irregular triangular array read by rows. T(n,k) is the number of ordered set partitions of [n] with exactly k descents, n>=0, 0<=k<=binomial(n,2).

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 4, 1, 8, 12, 18, 18, 12, 6, 1, 16, 32, 60, 84, 100, 92, 76, 48, 24, 8, 1, 32, 80, 176, 300, 448, 572, 650, 658, 596, 478, 334, 206, 102, 40, 10, 1, 64, 192, 480, 944, 1632, 2476, 3428, 4300, 5008, 5372, 5356, 4936, 4220, 3316, 2392, 1556, 904, 456, 188, 60, 12, 1
Offset: 0

Views

Author

Geoffrey Critzer, Feb 19 2025

Keywords

Comments

Let p = ({b_1},{b_2},...,{b_m}) be an ordered set partition of [n] into m blocks for some m, 1<=m<=n. A descent in p is an ordered pair (x,y) in [n]X[n] such that x is in b_i, y is in b_j, iy.
T(n,binomial(n,2)) = 1 (counts the ordered set partition ({n},{n-1},...,{2},{1})).
For n>=1, T(n,0) = 2^(n-1).
Sum_{k>=0} T(n,k)*2^k = A289545(n).
Sum_{k>=0} T(n,k)*3^k = A347841(n).
Sum_{k>=0} T(n,k)*4^k = A347842(n).
Sum_{k>=0} T(n,k)*5^k = A347843(n).
Sum_{k>=0} T(n,k)*6^k = A385408(n).
Sum_{k>=0} T(n,k)*7^k = A347844(n).
Sum_{k>=0} T(n,k)*8^k = A347845(n).
Sum_{k>=0} T(n,k)*9^k = A347846(n).
T(n,k) is the number of preferential arrangements of n labeled elements with exactly k inversions. For example, there 4 preferential rearrangements of length 3 with 1 inversion: 132, 213, 212, 131. - Kyle Celano, Aug 18 2025

Examples

			Triangle T(n,k) begins:
  1;
  1;
  2,  1;
  4,  4,  4,  1;
  8, 12, 18, 18,  12,  6,  1;
 16, 32, 60, 84, 100, 92, 76, 48, 24, 8, 1;
 ...
		

Crossrefs

Columns k=0-2 give: A011782, A001787(n-1) for n>=1, 2*A268586.
Cf. A000670 (row sums), A008302 (the cases where each block has size 1).

Programs

  • Maple
    b:= proc(o, u, t) option remember; expand(`if`(u+o=0, 1, `if`(t=1,
          b(u+o, 0$2), 0)+add(x^(u+j-1)*b(o-j, u+j-1, 1), j=1..o)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
    seq(T(n), n=0..8);  # Alois P. Heinz, Feb 21 2025
  • Mathematica
    nn = 7; B[n_] := FunctionExpand[QFactorial[n, u]]; e[z_] := Sum[z^n/B[n], {n, 0, nn}];Map[CoefficientList[#, u] &, Table[B[n], {n, 0, nn}] CoefficientList[Series[1/(1 -(e[z] - 1)), {z, 0, nn}], z]] // Grid

Formula

Sum_{k=0..binomial(n,2)} k * T(n,k) = A240796(n). - Alois P. Heinz, Feb 20 2025
T(n,k) = Sum_{w} 2^(asc(w)), where w runs through the set of permutations with k inversions and asc(w) is the number of ascents of w. - Kyle Celano, Aug 18 2025

A268587 Expansion of x^4*(5 - 16*x + 13*x^2)/(1 - 2*x)^4.

Original entry on oeis.org

0, 0, 0, 0, 5, 24, 85, 264, 760, 2080, 5488, 14080, 35328, 87040, 211200, 505856, 1198080, 2809856, 6533120, 15073280, 34537472, 78643200, 178061312, 401080320, 899153920, 2006974464, 4461690880, 9881780224, 21810380800, 47982837760, 105243475968
Offset: 0

Views

Author

Ran Pan, Feb 07 2016

Keywords

Comments

a(n) is the number of North-East lattice paths from (0,0) to (n,n) that have exactly three east steps below y = x - 1 and no east steps above y = x+1. Details can be found in Section 4.1 in Pan and Remmel's link.

Crossrefs

Programs

  • GAP
    Concatenation([0,0,0,0], List([3..40], n-> 2^(n-7)*(n-3)*(n+4)*(n+11)/3 )); # G. C. Greubel, May 24 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0,0,0,0] cat Coefficients(R!( x^4*(5-16*x+13*x^2)/(1-2*x)^4 )); // G. C. Greubel, May 24 2019
    
  • Maple
    F:= gfun:-rectoproc({16*a(n)-32*a(n+1)+24*a(n+2)-8*a(n+3)+a(n+4), a(0)=0, a(1)=0,a(2)=0,a(3)=0,a(4)=5,a(5)=24,a(6)=85},a(n),remember):
    map(F, [$0..40]); # Robert Israel, Feb 07 2016
  • Mathematica
    CoefficientList[Series[x^4 (5 -16x +13x^2)/(1-2x)^4, {x, 0, 40}], x] (* Michael De Vlieger, Feb 08 2016 *)
    LinearRecurrence[{8,-24,32,-16},{0,0,0,0,5,24,85},40] (* Harvey P. Dale, Feb 22 2025 *)
  • PARI
    concat(vector(4), Vec(x^4*(5-16*x+13*x^2)/(1-2*x)^4 + O(x^40))) \\ Colin Barker, Feb 08 2016
    
  • Sage
    (x^4*(5-16*x+13*x^2)/(1-2*x)^4).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 24 2019
    

Formula

G.f.: x^4*(5 - 16*x + 13*x^2)/(1 - 2*x)^4.
From Colin Barker, Feb 08 2016: (Start)
a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4) for n > 6.
a(n) = 2^(n-7)*(n-3)*(n+4)*(n+11)/3 for n > 2. (End)
E.g.f.: (33 + 60*x + 39*x^2 + (-33 + 6*x + 15*x^2 + 2*x^3)*exp(2*x))/96. - G. C. Greubel, May 24 2019

Extensions

Typo in name and g.f. corrected by Georg Fischer, May 24 2019

A268598 Expansion of x^5*(4 - 5*x)/(1 - 2*x)^4.

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 27, 120, 440, 1440, 4368, 12544, 34560, 92160, 239360, 608256, 1517568, 3727360, 9031680, 21626880, 51249152, 120324096, 280166400, 647495680, 1486356480, 3391094784, 7693402112, 17364418560, 39007027200, 87241523200, 194330492928
Offset: 0

Views

Author

Ran Pan, Feb 08 2016

Keywords

Comments

a(n) is the number of North-East lattice paths from (0,0) to (n,n) that have exactly two east steps below y = x - 1 and exactly one east step above y = x+1. Details can be found in Section 4.1 in Pan and Remmel's link.

Crossrefs

Programs

  • PARI
    concat(vector(5), Vec((4-5*x)*x^5/(1-2*x)^4 + O(x^40))) \\ Michel Marcus, Feb 08 2016

Formula

G.f.: x^5*(4 - 5*x)/(1 - 2*x)^4.
From Colin Barker, Feb 08 2016: (Start)
a(n) = 2^(n-7)*(n-4)*(n-3)*(n+3) for n>2.
a(n) = 8*a(n-1)-24*a(n-2)+32*a(n-3)-16*a(n-4) for n>3. (End)

A268599 Expansion of 2*x^6*(4-10*x+7*x^2)/(1-2*x)^5.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 8, 60, 294, 1180, 4200, 13776, 42560, 125568, 357120, 985600, 2652672, 6988800, 18077696, 46018560, 115507200, 286326784, 701890560, 1703411712, 4096655360, 9771417600, 23132110848, 54384394240, 127049662464, 295069286400, 681574400000
Offset: 0

Views

Author

Ran Pan, Feb 08 2016

Keywords

Comments

a(n) is the number of North-East lattice paths from (0,0) to (n,n) that have exactly two east steps below y = x - 1 and exactly two easts step above y = x + 1. Details can be found in Section 4.1 in Pan and Remmel's link.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[2 x^6 (4 - 10 x + 7 x^2)/(1 - 2 x)^5, {x, 0, 30}], x] (* Michael De Vlieger, Feb 08 2016 *)
  • PARI
    concat(vector(6), Vec(2*x^6*(4-10*x+7*x^2)/(1-2*x)^5 + O(x^100))) \\ Colin Barker, Feb 08 2016

Formula

G.f.: 2*x^6*(4-10*x+7*x^2)/(1-2*x)^5.
a(n) = 2^(n-10)*(n-5)*(n-4)*(n^2+3*n+10) for n>3. - Colin Barker, Feb 08 2016

A268600 Expansion of 1/(2*f(x)) + 1/(4 - 2*g(x)), where f(x) = sqrt(1 - 4*x) and g(x) = sqrt(1 + 4*x).

Original entry on oeis.org

1, 2, 4, 12, 36, 132, 456, 1752, 6340, 24660, 91224, 356776, 1337896, 5250728, 19877904, 78209712, 298176516, 1175437428, 4505865144, 17789574792, 68490100536, 270739425528, 1046041377264, 4139198745552, 16039426479336, 63522770785032, 246761907761776, 977995685565072, 3807202080396240, 15098691607042000, 58884954519908896
Offset: 0

Views

Author

Ran Pan, Feb 08 2016

Keywords

Comments

a(n) is the number of North-East lattice paths from (0,0) to (n,n) in which the total number of east steps below y = x - 1 or above y = x + 1 is even. Details can be found in Section 4.1 in Pan and Remmel's link.

Examples

			G.f. = 1 + 2*x + 4*x^2 + 12*x^3 + 36*x^4 + 132*x^5 + 456*x^6 + ... - _Michael Somos_, May 16 2022
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[1/(2 Sqrt[1 - 4x]) + 1/(4 - 2 Sqrt[1 + 4x]), {x, 0, 25}], x] (* Robert G. Wilson v, Nov 24 2016 *)
  • PARI
    my(x = 'x + O('x^40)); Vec(1/(2*sqrt(1-4*x)) + 1/(4 - 2*sqrt(1+4*x))) \\ Michel Marcus, Feb 11 2016

Formula

a(n) = binomial(2*n,n) - A268601(n).
G.f.: 1/(2*f(x)) + 1/(4 - 2*g(x)), where f(x) = sqrt(1 - 4*x) and g(x) = sqrt(1 + 4*x).
Conjecture D-finite with recurrence: -3*n*(n-1)*a(n) +8*(n-1)*(5*n-12)*a(n-1) +4*(-28*n+73)*a(n-2) -160*(2*n-5)*(2*n-7)*a(n-3) +192*(2*n-5)*(2*n-7)*a(n-4)=0. - R. J. Mathar, Jan 25 2020
a(n) = (-1)^n*A126984(n) + A268601(n). - Michael Somos, May 16 2022

A268601 Expansion of 1/(2*f(x)) - 1/(4 - 2*g(x)), where f(x) = sqrt(1 - 4*x) and g(x) = sqrt(1 + 4*x).

Original entry on oeis.org

0, 0, 2, 8, 34, 120, 468, 1680, 6530, 23960, 93532, 348656, 1366260, 5149872, 20238696, 76907808, 302903874, 1158168792, 4569270156, 17555689008, 69356428284, 267518448912, 1058057586456, 4094231982048, 16208177203764, 62887835652720, 249156625186328, 968943740083040, 3841488520364200, 14968574892499040, 59379627044952528
Offset: 0

Views

Author

Ran Pan, Feb 08 2016

Keywords

Comments

a(n) is the number of North-East lattice paths from (0,0) to (n,n) in which the total number of east steps below y = x - 1 or above y = x + 1 is odd. Details can be found in Section 4.1 in Pan and Remmel's link.

Crossrefs

Programs

  • PARI
    x = 'x + O('x^30); concat(vector(2), Vec(1/(2*sqrt(1-4*x)) - 1/(4 - 2*sqrt(1+4*x)))) \\ Michel Marcus, Feb 11 2016

Formula

a(n) = binomial(2*n,n) - A268600(n).
G.f.: 1/(2*f(x)) - 1/(4 - 2*g(x)), where f(x) = sqrt(1 - 4*x) and g(x) = sqrt(1 + 4*x).
Conjecture D-finite with recurrence: 3*n*(n-1)*a(n) -8*(n-1)*(5*n-12)*a(n-1) +4*(28*n-73)*a(n-2) +160*(2*n-5)*(2*n-7)*a(n-3) -192*(2*n-5)*(2*n-7)*a(n-4)=0. - R. J. Mathar, Jan 25 2020
Showing 1-6 of 6 results.