A268588 Numbers n such that n, n + 1, n + 2, n + 3 and n + 4 are products of exactly three primes.
602, 2522, 2523, 4202, 4921, 4922, 5034, 5282, 7730, 18241, 18242, 18571, 19129, 21931, 23161, 23305, 25203, 25553, 25554, 27290, 27291, 29233, 30354, 30793, 32035, 33843, 34561, 35714, 36001, 36835, 40313, 40314, 40394, 45265, 55361, 67609, 69667, 70202, 72721
Offset: 1
Keywords
Examples
a(1) = 602: 602 = 2 * 7 * 43; 603 = 3 * 3 * 67; 604 = 2 * 2 * 151; 605 = 5 * 11 * 11; 606 = 2 * 3 * 101 are all products of three primes. a(4) = 4202 : 4202 = 2 * 11 * 191; 4203 = 3 * 3 * 467; 4204 = 2 * 2 * 1051; 4205 = 5 * 29 * 29; 4206 = 2 * 3 * 701 are all products of three primes.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..11023
Programs
-
Magma
IsP3:=func< n | &+[k[2]: k in Factorization(n)] eq 3 >; [ n: n in [2..50000] | IsP3(n) and IsP3(n+1) and IsP3(n+2) and IsP3(n+3) and IsP3(n+4)];
-
Maple
with(numtheory): A268588:= proc() if bigomega(n)=3 and bigomega(n+1)=3 and bigomega(n+2)=3 and bigomega(n+3)=3 and bigomega(n+4)=3 then RETURN (n); fi; end: seq(A268588(), n=1..100000);
-
Mathematica
Select[Range[100000], PrimeOmega[#] == 3 && PrimeOmega[# + 1] == 3 && PrimeOmega[# + 2] == 3 && PrimeOmega[# + 3] == 3 && PrimeOmega[# + 4] == 3 &] SequencePosition[PrimeOmega[Range[73000]],{3,3,3,3,3}][[All,1]] (* Harvey P. Dale, Sep 03 2021 *)
-
PARI
for(n = 1,50000, bigomega(n)==3 & bigomega(n+1)==3 & bigomega(n+2)==3 & bigomega(n+3)==3 & bigomega(n+4)==3 & print1(n,","))
Extensions
Comment removed by Zak Seidov, Jan 29 2017
Comments