A268644 a(n) = 4*n^3 - 3*n^2 - 2*n - 1.
-1, -2, 15, 74, 199, 414, 743, 1210, 1839, 2654, 3679, 4938, 6455, 8254, 10359, 12794, 15583, 18750, 22319, 26314, 30759, 35678, 41095, 47034, 53519, 60574, 68223, 76490, 85399, 94974, 105239, 116218, 127935, 140414, 153679, 167754, 182663, 198430, 215079, 232634, 251119
Offset: 0
Links
- Ilya Gutkovskiy, Examples of the ordinary generating function for the values of cubic polynomialK
- Eric Weisstein's World of Mathematics, Cubic Polynomial
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[4*n^3-3*n^2-2*n-1: n in [0..40]]; // Vincenzo Librandi, Feb 10 2016
-
Mathematica
Table[4 n^3 - 3 n^2 - 2 n - 1, {n, 0, 40}] LinearRecurrence[{4, -6, 4, -1}, {-1, -2, 15, 74}, 41] CoefficientList[Series[(-1 + 2 x + 17 x^2 + 6 x^3) / (1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 10 2016 *)
-
PARI
a(n)=4*n^3-3*n^2-2*n-1 \\ Charles R Greathouse IV, Jul 26 2016
Formula
G.f.: (-1 + 2*x + 17*x^2 + 6*x^3)/(1 - x)^4.
a(n) = 4*a(n - 1) - 6*a(n - 2) + 4*a(n - 3) - a(n - 4).
Sum_{n>=0} 1/a(n) = -1.407823506818026589265...
E.g.f.: exp(x)*(-1 - x + 9*x^2 + 4*x^3). - Stefano Spezia, Nov 17 2024
Comments