cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A285380 G.f.: 1/(1 - 1!*x/(1 - 2!*x/(1 - 3!*x/(1 - 4!*x/(1 - 5!*x/(1 - 6!*x/(1 - ...))))))), a continued fraction.

Original entry on oeis.org

1, 1, 3, 21, 459, 48069, 31721355, 151932395493, 5929991210130219, 2103657835595933507013, 7506346835525189003011779147, 295743497615320848280307669164734117, 140189609286888251994538844205855399795958635
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 17 2017

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 21*x^3 + 459*x^4 + 48069*x^5 + 31721355*x^6 + 151932395493*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 12; CoefficientList[Series[1/(1 + ContinuedFractionK[-k! x, 1, {k, 1, nmax}]), {x, 0, nmax}], x]
  • PARI
    a(n) = my(A=1+O(x)); for(i=1, n, A=1-(n-i+1)!*x/A); polcoef(1/A, n); \\ Seiichi Manyama, Apr 15 2021

Formula

a(n) ~ A000178(n) ~ BarnesG(n+2) ~ exp(1/12 - n - 3*n^2/4) * n^(5/12 + n + n^2/2) * (2*Pi)^((n+1)/2) / A, where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Aug 26 2017

A343441 G.f.: 1 + C(1)*x/(1 + C(2)*x/(1 + C(3)*x/(1 + C(4)*x/(1 + C(5)*x/(1 +...))))), where C(n) are the Catalan numbers A000108.

Original entry on oeis.org

1, 1, -2, 14, -238, 10486, -1360142, 566636294, -790250356798, 3769300938094006, -62394920105801115182, 3626853378943129415555174, -747708300997964314376024192158, 551445848326104642338923476399909526, -1465934793325188376367147565710854513799822, 14139840911021914090289579305382872859520174083654
Offset: 0

Views

Author

Seiichi Manyama, Apr 15 2021

Keywords

Crossrefs

Programs

  • PARI
    c(n) = binomial(2*n, n)/(n+1);
    a(n) = my(A=1+O(x)); for(i=1, n, A=1+c(n-i+1)*x/A); polcoef(A, n);

Formula

G.f.: 1/(Sum_{k>=0} A268646(k) * (-x)^k).
Showing 1-2 of 2 results.