A268658 Numbers k such that 3*2^k + 1 is a prime factor of a generalized Fermat number 5^(2^m) + 1 for some m.
2, 8, 18, 66, 189, 209, 408, 2208, 2816, 3168, 3912, 20909, 54792, 59973, 157169, 303093, 709968, 801978, 1832496, 2145353, 2291610, 5082306, 10829346, 16408818
Offset: 1
References
- Wilfrid Keller, private communication, 2008.
Links
- Anders Björn and Hans Riesel, Factors of generalized Fermat numbers, Math. Comp. 67 (1998), no. 221, pp. 441-446.
- Anders Björn and Hans Riesel, Table errata to “Factors of generalized Fermat numbers”, Math. Comp. 74 (2005), no. 252, p. 2099.
- Anders Björn and Hans Riesel, Table errata 2 to "Factors of generalized Fermat numbers", Math. Comp. 80 (2011), pp. 1865-1866.
- C. K. Caldwell, Top Twenty page, Generalized Fermat Divisors (base=5)
- OEIS Wiki, Generalized Fermat numbers
Crossrefs
Programs
-
PARI
for(k=1,+oo,p=3*2^k+1;if(ispseudoprime(p),t=znorder(Mod(5,p));bitand(t,t-1)==0&&print1(k,", "))) \\ Jeppe Stig Nielsen, Oct 30 2020
Extensions
a(24) from Jeppe Stig Nielsen, Oct 30 2020