A268669 a(n) = polynomial quotient (computed over GF(2), result is its binary encoding) that is left after all instances of polynomial (X+1) have been factored out of the polynomial that is encoded by the binary expansion of n. (See comments for details).
1, 2, 1, 4, 1, 2, 7, 8, 7, 2, 11, 4, 13, 14, 1, 16, 1, 14, 19, 4, 21, 22, 13, 8, 25, 26, 7, 28, 11, 2, 31, 32, 31, 2, 35, 28, 37, 38, 11, 8, 41, 42, 25, 44, 7, 26, 47, 16, 49, 50, 1, 52, 19, 14, 55, 56, 13, 22, 59, 4, 61, 62, 21, 64, 21, 62, 67, 4, 69, 70, 61, 56, 73, 74, 13, 76, 59, 22, 79, 16, 81, 82, 49, 84, 1
Offset: 1
Examples
For n = 5 ("101" in binary) which encodes polynomial x^2 + 1, we observe that it can be factored in ring GF(2)[X] as (X+1)(X+1), and thus a(5) = 1, because after dividing both instances of (X+1) off, we are left with the quotient polynomial 1 which is encoded by 1. For n = 8 ("1000" in binary) which encodes polynomial x^3, we observe that it is not divisible in ring GF(2)[X] by polynomial X+1, thus a(8) = 8. For n = 9 ("1001" in binary) which encodes polynomial x^3 + 1, we observe that it can be factored over GF(2) as (X+1)(X^2 + X + 1), and thus a(9) = 7, because the quotient polynomial X^2 + X + 1 is encoded by 7 ("111" in binary).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- Eric Weisstein's World of Mathematics, Rule 60
- Index entries for sequences related to cellular automata
- Index entries for sequences operating on GF(2)[X]-polynomials
Crossrefs
Programs
-
Mathematica
f[n_] := If[OddQ@ #, n, f[#/2]] &@ Fold[BitXor, n, Quotient[n, 2^Range[BitLength@ n - 1]]]; Array[f, {85}] (* Michael De Vlieger, Feb 12 2016, after Jan Mangaldan at A006068 *)
-
PARI
a(n) = {p = Pol(binary(n))*Mod(1,2); q = (x+1)*Mod(1,2); while (type(r = p/q) == "t_POL", p = r); np = Polrev(vector(poldegree(p)+1, k, k--; lift(polcoeff(p, k)))); subst(np, x, 2);} \\ Michel Marcus, Feb 12 2016
-
Scheme
;; This employs the given recurrence and uses memoization-macro definec: (definec (A268669 n) (if (odd? (A006068 n)) n (A268669 (/ (A006068 n) 2)))) (define (A268669 n) (let loop ((n n)) (let ((k (A006068 n))) (if (odd? k) n (loop (/ k 2)))))) ;; Computed in a loop, no memoization.
Formula
Other identities and observations. For all n >= 1:
A010060(a(n)) = 1. [All terms are odious.]
a(n) <= n.
The equivalence of the following two formulas stems from the additive nature of Rule-60 cellular automaton. Or more plainly, because carryless binary multiplication A048720 distributes over carryless binary sum, XOR A003987:
Comments