cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A268837 Antidiagonal sums of array A268715: a(n) = Sum_{k=0..n} A003188(A006068(n)+A006068(n-k)).

Original entry on oeis.org

0, 2, 7, 18, 17, 48, 56, 80, 67, 122, 136, 194, 204, 268, 281, 328, 291, 378, 396, 498, 510, 640, 675, 792, 790, 886, 965, 1098, 1093, 1208, 1248, 1344, 1227, 1378, 1356, 1530, 1538, 1792, 1815, 2016, 2008, 2218, 2339, 2602, 2619, 2892, 2970, 3208, 3150, 3294, 3385, 3586, 3691, 4012, 4174, 4440, 4367, 4554, 4644
Offset: 0

Views

Author

Antti Karttunen, Feb 15 2016

Keywords

Crossrefs

Cf. also A268720, A268836.

Programs

  • Scheme
    (define (A268837 n) (add (lambda (k) (A003188 (+ (A006068 k) (A006068 (- n k))))) 0 n))
    (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i)))))))

Formula

a(n) = Sum_{k=0..n} A003188(A006068(n)+A006068(n-k)).

A342448 Partial sums of A066194.

Original entry on oeis.org

1, 3, 7, 10, 18, 25, 30, 36, 52, 67, 80, 94, 103, 113, 125, 136, 168, 199, 228, 258, 283, 309, 337, 364, 381, 399, 419, 438, 462, 485, 506, 528, 592, 655, 716, 778, 835, 893, 953, 1012, 1061, 1111, 1163, 1214, 1270, 1325, 1378, 1432, 1465, 1499, 1535, 1570
Offset: 1

Views

Author

John Erickson, Mar 12 2021

Keywords

Comments

n^2/2 + n/2 <= a(n) <= (31/50)*n^2 + n/2. The lower and upper bounds are attained at n=2^k and n=5*2^k for k >= 0.

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, n,
          Bits[Xor](n, b(iquo(n, 2))))
        end:
    a:= proc(n) a(n):= 1+`if`(n<2, 0, a(n-1)+b(n-1)) end:
    seq(a(n), n=1..60);  # Alois P. Heinz, Mar 14 2021
  • Mathematica
    a[1]=1;
    a[n_/;EvenQ[n]]:= a[n] = 4a[n/2] - n/2;
    a[n_/;OddQ[n]]:= a[n] = 2a[(n - 1)/2]+2a[(n + 1)/2]-(n-1)/2 - ThueMorse[n];
    (* Second program: *)
    b[n_] := If[n==0, 0, BitXor@@Table[Floor[n/2^m], {m, 0, Floor[Log[2, n]]}]];
    A066194 = Table[b[n]+1, {n, 0, 60}];
    A066194 // Accumulate (* Jean-François Alcover, Sep 10 2022 *)

Formula

a(n) = A268836(n)/2 + n. - Kevin Ryde, Mar 12 2021
a(1) = 1; a(n) = [n == 0 (mod 2)]*(4*a(n/2) - n/2) + [n == 1 (mod 2)]*(2*a((n - 1)/2)+2*a((n + 1)/2)-(n-1)/2 - A010060(n)) where [] is an Iverson bracket
Showing 1-2 of 2 results.