A268924 One of the two successive approximations up to 3^n for the 3-adic integer sqrt(-2). These are the numbers congruent to 1 mod 3 (except for n = 0).
0, 1, 4, 22, 22, 22, 508, 508, 2695, 2695, 2695, 2695, 356989, 888430, 4077076, 4077076, 18425983, 18425983, 147566146, 534986635, 534986635, 7508555437, 28429261843, 28429261843, 122572440670, 405001977151
Offset: 0
Examples
n=2: 4^2 + 2 = 18 == 0 (mod 3^2), and 4 is the only solution from {0, 1, ..., 8} which is congruent to 1 modulo 3. n=3: the only solution of X^2 + 2 == 0 (mod 3^3) with X from {0, ..., 26} and X == 1 (mod 3) is 22. The number 5 = A271222(3) also satisfies the first congruence but not the second one: 5 == 2 (mod 3). n=4: the only solution of X^2 + 2 == 0 (mod 3^4) with X from {0, ..., 80} and X == 1 (mod 3) is also 22. The number 59 = A271222(4) also satisfies the first congruence but not the second one: 59 == 2 (mod 3).
References
- Trygve Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964, p. 87.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..2096
- Peter Bala, A note on A268924 and A271222, Nov 28 2022.
- Wikipedia, Hensel's Lemma.
Programs
-
Maple
with(padic):D1:=op(3,op([evalp(RootOf(x^2+2),3,20)][1])): 0,seq(sum('D1[k]*3^(k-1)','k'=1..n), n=1..20); # alternative program based on the Lucas numbers L(3^n) = A006267(n) a := proc(n) option remember; if n = 1 then 1 else irem(a(n-1)^3 + 3*a(n-1), 3^n) end if; end: seq(a(n), n = 1..22); # Peter Bala, Nov 15 2022
-
PARI
a(n) = truncate(sqrt(-2+O(3^(n)))); \\ Michel Marcus, Apr 09 2016
-
Python
def a268924(n): ary=[0] a, mod = 1, 3 for i in range(n): b=a%mod ary.append(b) a=b**2 + b + 2 mod*=3 return ary print(a268924(100)) # Indranil Ghosh, Aug 04 2017, after Ruby
-
Ruby
def A268924(n) ary = [0] a, mod = 1, 3 n.times{ b = a % mod ary << b a = b * b + b + 2 mod *= 3 } ary end p A268924(100) # Seiichi Manyama, Aug 03 2017
Formula
a(n)^2 + 2 == 0 (mod 3^n), and a(n) == 1 (mod 3). Representatives of the complete residue system {0, 1, ..., 3^n-1} are taken.
Recurrence for n >= 1: a(n) = modp(a(n-1) + a(n-1)^2 + 2, 3^n), n >= 2, with a(1) = 1. Here modp(a, m) is used to pick the representative of the residue class a modulo m from the smallest nonnegative complete residue system {0, 1, ..., m-1}.
a(n) = 3^n - A271222(n), n >= 1.
a(n) == Lucas(3^n) (mod 3^n). - Peter Bala, Nov 10 2022
Comments