A269043 a(n) is the number of distinct values that can be expressed as prime(n+k) + prime(n-k) in at least 2 different ways.
0, 0, 0, 1, 1, 1, 1, 2, 3, 3, 2, 2, 3, 1, 4, 4, 2, 4, 4, 4, 3, 5, 5, 7, 9, 8, 7, 8, 7, 6, 7, 9, 7, 9, 8, 11, 8, 8, 7, 10, 9, 11, 12, 9, 9, 14, 11, 12, 11, 15, 15, 12, 14, 12, 12, 17, 11, 14, 15, 15, 14, 15, 18, 16, 13, 18, 12, 16, 14, 16, 14, 12, 19, 17, 13, 19
Offset: 1
Keywords
Examples
a(13) = 3 because: p(13 + 1) + p(13 - 1) = 43 + 37 = 80; p(13 + 2) + p(13 - 2) = 47 + 31 = 78; p(13 + 3) + p(13 - 3) = 53 + 29 = 82; p(13 + 4) + p(13 - 4) = 59 + 23 = 82; p(13 + 5) + p(13 - 5) = 61 + 19 = 80; p(13 + 6) + p(13 - 6) = 67 + 17 = 84; p(13 + 7) + p(13 - 7) = 71 + 13 = 84; p(13 + 8) + p(13 - 8) = 73 + 11 = 84. p(13 + 9) + p(13 - 9) = 79 + 7 = 86; p(13 + 10) + p(13 - 10) = 83 + 5 = 88; p(13 + 11) + p(13 - 11) = 89 + 3 = 92; p(13 + 12) + p(13 - 12) = 97 + 2 = 99. The 3 distinct values of prime(n+k) + prime(n-k) that are each obtained in at least 2 ways are 80, 82 and 84.
Links
- Michel Lagneau, Table of n, a(n) for n = 1..1000
Programs
-
Maple
for n from 1 to 100 do: lst:={}:W:=array(1..n-1):cr:=0: for m from n-1 by -1 to 1 do: q:=ithprime(n-m)+ithprime(n+m):lst:=lst union {q}:W[m]:=q: od: n0:=nops(lst):c:=0:U:=array(1..n0): for i from 1 to n0 do: c1:=0: for j from 1 to n-1 do: if lst[i]=W[j] then c:=c+1:c1:=c1+1: else fi: od: U[i]:=c1:cr:=cr+1: od: ct:=0: for l from 1 to cr do: if U[l]>1 then ct:=ct+1: else fi: od: printf(`%d, `,ct): od:
-
PARI
a(n) = {v = []; for (k=1, n-1, v = concat(v, prime(n+k) + prime(n-k));); vd = vecsort(v,,8); sum(k=1, #vd, #select(x->x==vd[k], v)>1);} \\ Michel Marcus, Mar 13 2016
Comments