cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269232 a(n) = (n + 1)*(6*n^2 + 15*n + 4)/2.

Original entry on oeis.org

2, 25, 87, 206, 400, 687, 1085, 1612, 2286, 3125, 4147, 5370, 6812, 8491, 10425, 12632, 15130, 17937, 21071, 24550, 28392, 32615, 37237, 42276, 47750, 53677, 60075, 66962, 74356, 82275, 90737, 99760, 109362, 119561, 130375, 141822, 153920, 166687, 180141
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 20 2016

Keywords

Examples

			a(0) = 0 + 1*2 = 2;
a(1) = 0 + 1*2 + 3 + 4*5 = 25;
a(2) = 0 + 1*2 + 3 + 4*5 + 6 + 7*8 = 87;
a(3) = 0 + 1*2 + 3 + 4*5 + 6 + 7*8 + 9 + 10*11 = 206;
a(4) = 0 + 1*2 + 3 + 4*5 + 6 + 7*8 + 9 + 10*11 + 12 + 13*14 = 400, etc.
		

Crossrefs

Programs

  • Magma
    [(n+1)*(6*n^2+15*n+4)/2: n in [0..40]]; // Vincenzo Librandi, Feb 22 2016
  • Mathematica
    Table[(n + 1) ((6 n^2 + 15 n + 4)/2), {n, 0, 38}]
    Table[Sum[3 k + (3 k + 1) (3 k + 2), {k, 0, n}], {n, 0, 38}]
    LinearRecurrence[{4, -6, 4, -1}, {2, 25, 87, 206}, 39]
  • PARI
    Vec((2 + 17*x - x^2)/(x - 1)^4 + O(x^50)) \\ Michel Marcus, Feb 22 2016
    

Formula

G.f.: (2 + 17*x - x^2)/(x - 1)^4.
a(n) = Sum_{k=0..n} (3*k + (3*k+1)*(3*k+2)) = Sum_{k=0..n} (A008585(k) + A001504(k)).
Sum_{n>=0} 1/a(n) = 0.56407113696623548787861365289...