cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269296 Decimal expansion of Sum_{k>=0} 1/(5k)!.

Original entry on oeis.org

1, 0, 0, 8, 3, 3, 3, 6, 0, 8, 9, 0, 7, 2, 9, 0, 2, 8, 9, 9, 7, 6, 4, 5, 3, 6, 6, 7, 3, 5, 4, 8, 3, 8, 7, 8, 6, 0, 7, 1, 0, 7, 7, 2, 8, 1, 5, 7, 9, 5, 4, 3, 1, 0, 2, 0, 0, 3, 0, 5, 9, 0, 7, 4, 9, 2, 7, 0, 7, 5, 5, 0, 4, 8, 4, 8, 1, 1, 1, 0, 8, 4, 1, 1, 4, 8, 5, 5, 9, 4, 1, 6, 1, 7, 0, 0, 6, 5, 7, 8, 1, 9, 2, 5, 2, 6, 8, 9, 9, 1, 9, 4, 6, 9, 7, 5, 7, 7, 4, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 21 2016

Keywords

Comments

From Vaclav Kotesovec, Feb 24 2016: (Start)
Sum_{k>=0} 1/k! = A001113 = exp(1).
Sum_{k>=0} 1/(2k)! = A073743 = cosh(1).
Sum_{k>=0} 1/(3k)! = A143819 = (2*cos(sqrt(3)/2)*exp(-1/2) + exp(1))/3.
Sum_{k>=0} 1/(4k)! = (cos(1) + cosh(1))/2 = 1.0416914703416917479394211141...
(End)
For q integer >= 1, Sum_{m>=0} 1/(q*m)! = (1/q) * Sum_{k=1..q} exp(X_k) where X_1, X_2, ..., X_q are the q-th roots of unity. - Bernard Schott, Mar 02 2020
Continued fraction: 1 + 1/(120 - 120/(30241 - 30240/(360361 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (5*n)*(5*n - 1)*(5*n - 2)*(5*n - 3)*(5*n - 4) for n >= 1. Cf. A346441. - Peter Bala, Feb 22 2024

Examples

			1 + 1/5! + 1/10! + 1/15! + ... = 1.008333608907290289976453667354838786...
		

Crossrefs

Cf. A100734.
Cf. A001113 (Sum 1/k!), A073743 (Sum 1/(2k)!), A143819 (Sum 1/(3k)!), A332890 (Sum 1/(4k)!), this sequence (Sum 1/(5k)!), A332892 (Sum 1/(6k)!), A346441.

Programs

  • Maple
    evalf((exp(1) + 2*exp(-(sqrt(5) + 1)/4) * cos(sqrt((5 - sqrt(5))/2)/2) + 2*exp((sqrt(5) - 1)/4) * cos(sqrt((5 + sqrt(5))/2)/2))/5, 120); # Vaclav Kotesovec, Feb 24 2016
  • Mathematica
    RealDigits[HypergeometricPFQ[{}, {1/5, 2/5, 3/5, 4/5}, 1/3125], 10, 120][[1]]
  • PARI
    suminf(k=0, 1/(5*k)!) \\ Michel Marcus, Feb 21 2016

Formula

Equals Sum_{k>=0} 1/A100734(k).
Equals (exp(1) + exp(-(-1)^(1/5)) + exp((-1)^(2/5)) + exp(-(-1)^(3/5)) + exp((-1)^(4/5)))/5.
Equals (exp(1) + 2*exp(-(sqrt(5) + 1)/4) * cos(sqrt((5 - sqrt(5))/2)/2) + 2*exp((sqrt(5) - 1)/4) * cos(sqrt((5 + sqrt(5))/2)/2))/5. - Vaclav Kotesovec, Feb 24 2016
Sum_{k>=0} (-1)^k / (5*k)! = (exp(-1) + 2*cos(5^(1/4)/(2*sqrt(phi))) * exp(phi/2) + 2*cos(5^(1/4)*sqrt(phi)/2) / exp(1/(2*phi)))/5 = 0.99166694223909419..., where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Mar 02 2020