cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A299412 Pentagonal pyramidal numbers divisible by 3.

Original entry on oeis.org

0, 6, 18, 75, 126, 288, 405, 726, 936, 1470, 1800, 2601, 3078, 4200, 4851, 6348, 7200, 9126, 10206, 12615, 13950, 16896, 18513, 22050, 23976, 28158, 30420, 35301, 37926, 43560, 46575, 53016, 56448, 63750, 67626, 75843, 80190, 89376, 94221, 104430, 109800, 121086, 127008, 139425, 145926, 159528, 166635
Offset: 0

Views

Author

Justin Gaetano, Feb 20 2018

Keywords

Examples

			The first 6 pentagonal pyramidal numbers are 0, 1, 6, 18, 40, 75; of these, 0, 6, 18, 75 are divisible by 3.
		

Crossrefs

Programs

  • Magma
    [IsEven(n) select (3*n/2)^2*(3*n/2+1)/2 else ((3*n+1)/2)^2*((3*n+1)/2+1)/2: n in [0..50] ]; // Vincenzo Librandi, Mar 14 2018
  • Maple
    f:= proc(n) if n::even then (3*n/2)^2*(3*n/2+1)/2 else
    ((3*n+1)/2)^2*((3*n+1)/2+1)/2 fi end proc:
    map(f, [$0..100]); # Robert Israel, Feb 28 2018
  • Mathematica
    Array[((3 #1 + #2)/2)^2*((3 #1 + #2)/2 + 1)/2 & @@ {#, Boole@ OddQ@ #} &, 47, 0] (* Michael De Vlieger, Feb 21 2018 *)
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{0,6,18,75,126,288,405},50] (* Harvey P. Dale, Jul 16 2021 *)
  • PARI
    lista(nn) = {for (n=0, nn, if (!(n^2*(n+1)/2 % 3), print1(n^2*(n+1)/2, ", ")););} \\ Michel Marcus, Feb 21 2018
    
  • PARI
    x='x+O('x^99); concat(0, Vec(3*x*(3*x^4+5*x^3+13*x^2+4*x+2)/((x-1)^4*(x+1)^3))) \\ Altug Alkan, Mar 14 2018
    

Formula

a(n) = A007494(n)*A117748(n).
a(n) = (3*n/2)^2*(3*n/2+1)/2 if n even.
a(n) = ((3*n+1)/2)^2*((3*n+1)/2+1)/2 if n odd.
From Omar E. Pol, Feb 21 2018: (Start)
a(n) = 3*A001318(n)*A007494(n).
a(n) = A001318(n)*abs(A269416(n-1)), n >= 1. (End)
G.f.: 3*x*(3*x^4 + 5*x^3 + 13*x^2 + 4*x + 2)/((x-1)^4*(x+1)^3). - Robert Israel, Feb 28 2018
Showing 1-1 of 1 results.