cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269446 a(n) = n*(n^6 + n^3 + 1)*(n^6 - n^3 + 1)*(n^2 + n + 1)*(n^2 - n + 1)*(n + 1) + 1.

Original entry on oeis.org

1, 19, 524287, 581130733, 91625968981, 4768371582031, 121871948002099, 1899815864228857, 20587884010836553, 168856464709124011, 1111111111111111111, 6115909044841454629, 29043636306420266077, 121826690864620509223, 459715689149916492091, 1583455585752214704241
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 27 2016

Keywords

Comments

a(n) = Phi_19(n) where Phi_k(x) is the k-th cyclotomic polynomial.

Crossrefs

Cf. similar sequences of the type Phi_k(n) listed in A269442.

Programs

  • GAP
    List([0..20], n-> n*(n^6+n^3+1)*(n^6-n^3+1)*(n^2+n+1)*(n^2-n+1)*(n+1)+1); # G. C. Greubel, Apr 24 2019
  • Magma
    [n*(n^6+n^3+1)*(n^6-n^3+1)*(n^2+n+1)*(n^2-n+1)*(n+1)+1: n in [0..20]]; // G. C. Greubel, Apr 24 2019
    
  • Mathematica
    Table[Cyclotomic[19, n], {n, 0, 15}]
  • PARI
    a(n)=n*(n^6+n^3+1)*(n^6-n^3+1)*(n^2+n+1)*(n^2-n+1)*(n+1)+1 \\ Charles R Greathouse IV, Jul 26 2016
    
  • Sage
    [n*(n^6+n^3+1)*(n^6-n^3+1)*(n^2+n+1)*(n^2-n+1)*(n+1)+1 for n in (0..20)] # G. C. Greubel, Apr 24 2019
    

Formula

Sum_{n>=0} 1/a(n) = 1.0526334880315548541801483535546024...