A269552 Expansion of (-3*x^2 + 94*x - 3)/(x^3 - 99*x^2 + 99*x - 1).
3, 203, 19803, 1940403, 190139603, 18631740603, 1825720439403, 178901971320803, 17530567468999203, 1717816709990601003, 168328507011609899003, 16494475870427779501203, 1616290306794910781218803, 158379955590030828779941403, 15519619357516226309653038603, 1520764317081000147517217841603
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- J. Mc Laughlin, An identity motivated by an amazing identity of Ramanujan, Fib. Q., 48 (No. 1, 2010), 34-38.
- Index entries for linear recurrences with constant coefficients, signature (99, -99, 1).
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[(-3x^2+94x-3)/(x^3-99x^2+99x-1),{x,0,20}],x] (* or *) LinearRecurrence[{99,-99,1},{3,203,19803},20] (* Harvey P. Dale, Jan 14 2019 *)
-
PARI
Vec((-3*x^2 + 94*x - 3)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20))
Formula
G.f.: (-3*x^2 + 94*x - 3)/(x^3 - 99*x^2 + 99*x - 1).
a(n) = 99*a(n-1)-99*a(n-2)+a(n-3). - Wesley Ivan Hurt, May 20 2021
Comments