A269554 Expansion of (3*x^2 + 244*x + 1)/(x^3 - 99*x^2 + 99*x - 1).
-1, -343, -33861, -3318283, -325158121, -31862177823, -3122168268781, -305940628162963, -29979059391701841, -2937641879758617703, -287858925156952833301, -28207237023501619046043, -2764021369378001713679161, -270845886962020666321511983, -26540132900908647297794495421
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- J. Mc Laughlin, An identity motivated by an amazing identity of Ramanujan, Fib. Q., 48 (No. 1, 2010), 34-38.
- Index entries for linear recurrences with constant coefficients, signature (99,-99,1).
Crossrefs
Programs
-
Magma
m:=20; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((3*x^2+244*x+1)/(x^3-99*x^2+99*x-1))); // Bruno Berselli, Mar 02 2016 -
Mathematica
CoefficientList[Series[(3 x^2 + 244 x + 1)/(x^3 - 99 x^2 + 99 x - 1), {x, 0, 20}], x] (* or *) Table[Simplify[31/12 + ((17 Sqrt[6] - 43)/(2 Sqrt[6] + 5)^(2 n) - (17 Sqrt[6] + 43) (2 Sqrt[6] + 5)^(2 n))/24], {n, 0, 20}] (* Bruno Berselli, Mar 02 2016 *) LinearRecurrence[{99,-99,1},{-1,-343,-33861},20] (* Harvey P. Dale, Feb 03 2025 *)
-
PARI
Vec((3*x^2 + 244*x + 1)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20))
-
Sage
gf = (3*x^2+244*x+1)/(x^3-99*x^2+99*x-1) print(taylor(gf, x, 0, 20).list()) # Bruno Berselli, Mar 02 2016
Formula
G.f.: (3*x^2 + 244*x + 1)/(x^3 - 99*x^2 + 99*x - 1).
a(n) = 31/12 + ((17*sqrt(6) - 43)/(2*sqrt(6) + 5)^(2*n) - (17*sqrt(6) + 43)*(2 sqrt(6) + 5)^(2*n))/24. - Bruno Berselli, Mar 02 2016
Comments