cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A093720 Decimal expansion of Sum_{n >= 2} zeta(n)/n!.

Original entry on oeis.org

1, 0, 7, 8, 1, 8, 8, 7, 2, 9, 5, 7, 5, 8, 1, 8, 4, 8, 2, 7, 5, 8, 2, 6, 5, 4, 3, 6, 7, 6, 9, 8, 3, 2, 3, 8, 1, 7, 0, 7, 2, 1, 9, 6, 0, 9, 6, 7, 2, 3, 4, 7, 1, 6, 0, 0, 3, 7, 1, 7, 0, 2, 0, 7, 8, 0, 0, 7, 1, 5, 2, 3, 0, 0, 3, 2, 7, 8, 4, 3, 4, 8, 6, 5, 6, 7, 6, 7, 6, 8, 0, 8, 8, 5, 8, 2, 9, 0, 1
Offset: 1

Views

Author

Eric W. Weisstein, Apr 12 2004

Keywords

Examples

			1.078188729575818482758265436769832381707219...
		

Crossrefs

Programs

  • Maple
    evalf(Sum(exp(1/n)-1-1/n, n=1..infinity), 120); # Vaclav Kotesovec, Mar 04 2016
  • Mathematica
    digits = 99; ClearAll[z, rd]; z[k_] := z[k] = z[k-1] + N[Sum[Zeta[n]/n!, {n, 2^(k-1) + 1, 2^k}], digits]; z[0] = 0; rd[k_] := rd[k] = RealDigits[z[k]][[1]]; rd[0]; rd[k = 1]; While[ rd[k] != rd[k-1], k++]; rd[k] (* Jean-François Alcover, Nov 09 2012 *)
  • PARI
    suminf(n=2, zeta(n)/n!) \\ Michel Marcus, Mar 15 2017

Formula

Equals Sum_{k>=1} (exp(1/k) - 1 - 1/k). - Vaclav Kotesovec, Mar 04 2016
Equals Integral_{x=0..oo} exp(1/(x^2 + 1))*sin(x/(x^2 + 1))*(coth(Pi*x) - 1) dx + A091725 - 2*A001620 - exp(1)/2 + 3/2. - Velin Yanev, Nov 14 2024

Extensions

Corrected by Fredrik Johansson, Mar 19 2006

A269611 Decimal expansion of Sum_{n>=1} (sin(Pi/n))^2.

Original entry on oeis.org

4, 3, 2, 2, 6, 7, 5, 0, 4, 3, 2, 3, 9, 6, 3, 7, 1, 4, 1, 1, 1, 8, 5, 5, 6, 0, 6, 3, 4, 4, 0, 4, 2, 8, 0, 9, 2, 0, 7, 8, 5, 2, 1, 7, 3, 5, 5, 0, 5, 3, 1, 9, 5, 5, 5, 2, 5, 6, 9, 9, 9, 6, 5, 9, 9, 2, 3, 0, 0, 3, 0, 1, 0, 6, 1, 4, 8, 2, 3, 0, 7, 9, 8, 4, 1, 1, 0, 7, 7, 0, 5, 8, 5, 1, 5, 0, 2, 6, 3, 5, 0, 8, 1, 4, 7
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 01 2016

Keywords

Examples

			4.32267504323963714111855606344042809207852173550531955525699965992300301...
		

Crossrefs

Programs

  • Maple
    evalf(Sum((sin(Pi/n))^2, n=1..infinity), 120);
  • Mathematica
    RealDigits[NSum[Sin[Pi/n]^2, {n, 1, Infinity}, WorkingPrecision -> 120, NSumTerms -> 10000, PrecisionGoal -> 120, Method -> {"NIntegrate", "MaxRecursion" -> 100}]][[1]]
  • PARI
    default(realprecision,120); sumpos(n=1, (sin(Pi/n))^2)

Formula

Equals (1/2) * Sum_{n>=1} (1 - cos(2*Pi/n)).
Equals Sum_{k>=1} (-1)^(k+1) * 2^(2*k-1) * Pi^(2*k) * Zeta(2*k) / (2*k)!, where Zeta is the Riemann zeta function.
Equals Sum_{k>=1} 2^(4*k-2) * Pi^(4*k) * B(2*k) / (2*k)!^2, where B(n) is the Bernoulli number A027641(n)/A027642(n).

A093721 Decimal expansion of Sum_{n>=1} zeta(2n)/(2n)!.

Original entry on oeis.org

8, 6, 9, 0, 0, 1, 9, 9, 1, 9, 6, 2, 9, 0, 8, 9, 9, 8, 8, 1, 1, 0, 5, 4, 8, 0, 5, 5, 6, 1, 3, 9, 5, 6, 8, 8, 8, 9, 2, 4, 9, 4, 8, 4, 1, 8, 8, 0, 5, 7, 7, 8, 5, 0, 7, 1, 0, 6, 4, 5, 7, 7, 8, 5, 6, 0, 6, 7, 4, 6, 0, 9, 5, 5, 4, 2, 5, 8, 0, 1, 3, 5, 8, 7, 6, 7, 1, 9, 6, 4, 5, 9, 3, 3, 5, 3, 8, 1, 1, 8, 0, 9
Offset: 0

Views

Author

Eric W. Weisstein, Apr 12 2004

Keywords

Examples

			0.86900199196290899881105480556139568889249484188057785071064577856...
		

Crossrefs

Programs

  • Maple
    evalf(Sum(cosh(1/n)-1, n=1..infinity), 120); # Vaclav Kotesovec, Mar 04 2016
  • Mathematica
    digits = 105; z[k_] := z[k] = z[k-1] + N[Sum[Zeta[2n]/(2n)!, {n, 2^(k-1) + 1, 2^k}], digits]; z[0] = N[Pi^2/12, digits]; rd[k_] := rd[k] = RealDigits[z[k]][[1]]; rd[0]; rd[k = 1]; While[rd[k] != rd[k-1], k++]; rd[k] (* Jean-François Alcover, Nov 09 2012 *)
  • PARI
    suminf(n=1, zeta(2*n)/(2*n)!) \\ Michel Marcus, Mar 20 2017

Formula

Equals Sum_{k>=1} (cosh(1/k) - 1). - Vaclav Kotesovec, Mar 04 2016

A269720 Decimal expansion of Sum_{n>=1} (Pi/n - sin(Pi/n)).

Original entry on oeis.org

4, 0, 9, 6, 4, 3, 4, 8, 9, 1, 5, 0, 1, 7, 3, 9, 8, 3, 2, 2, 2, 0, 2, 3, 4, 5, 8, 8, 6, 2, 6, 0, 5, 5, 4, 9, 5, 9, 2, 8, 1, 4, 4, 1, 6, 5, 1, 1, 9, 1, 2, 0, 4, 7, 5, 6, 4, 4, 4, 8, 6, 6, 4, 0, 6, 3, 9, 7, 5, 1, 0, 4, 3, 5, 0, 6, 7, 8, 0, 7, 8, 1, 7, 0, 5, 8, 2, 2, 8, 1, 6, 9, 6, 0, 8, 5, 0, 4, 4, 9, 8, 7, 4, 7, 0
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 04 2016

Keywords

Examples

			4.096434891501739832220234588626055495928144165119120475644486640639751...
		

Crossrefs

Programs

  • Maple
    evalf(Sum(Pi/n - sin(Pi/n), n=1..infinity), 120);
  • Mathematica
    RealDigits[NSum[Pi/n - Sin[Pi/n], {n, 1, Infinity}, WorkingPrecision->200, NSumTerms->10000, PrecisionGoal->120, Method->{"NIntegrate", "MaxRecursion"->100}]][[1]]
    (* Be aware that N[Sum[Pi/n - Sin[Pi/n], {n, 1, Infinity}], 120] give an incorrect numerical result, only 25 decimal places are correct! *)
  • PARI
    default(realprecision,120); sumpos(n=1, Pi/n - sin(Pi/n))

Formula

Equals Sum_{k>=2} (-1)^k * Pi^(2*k-1) * Zeta(2*k-1) / (2*k-1)!, where Zeta is the Riemann zeta function.
Showing 1-4 of 4 results.