A269576 a(n) = Product_{i=1..n} (4^i - 3^i).
1, 7, 259, 45325, 35398825, 119187843775, 1692109818073675, 99792176520894983125, 24195710911432718503470625, 23942309231057283642583777144375, 96180015123706384385790918441966041875
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..57
Crossrefs
Programs
-
Maple
seq(mul(4^i-3^i,i=1..n),n=0..20); # Robert Israel, Jun 01 2023
-
Mathematica
Table[Product[4^i - 3^i, {i, n}], {n, 11}] (* Michael De Vlieger, Mar 07 2016 *) FoldList[Times,Table[4^n-3^n,{n,20}]] (* Harvey P. Dale, Jul 30 2018 *)
-
PARI
a(n) = prod(k=1, n, 4^k-3^k); \\ Michel Marcus, Mar 05 2016
Formula
a(n) = Product_{i=1..n} A005061(i).
a(n) ~ c * 2^(n*(n+1)), where c = QPochhammer(3/4) = 0.015545038845451847... . - Vaclav Kotesovec, Oct 10 2016
a(n+3)/a(n+2) - 7 * a(n+2)/a(n+1) + 12 * a(n+1)/a(n) = 0. - Robert Israel, Jun 01 2023
Comments