cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A103533 Even semiprimes of the form prime(n)*prime(n+1) - 1.

Original entry on oeis.org

14, 34, 142, 898, 1762, 5182, 19042, 79522, 213442, 359998, 412162, 627238, 685582, 777922, 1192462, 1299478, 1695202, 2005006, 2585662, 2663398, 3849322, 4536898, 5143822, 5588446, 5673922, 6594502, 7225342, 8363638, 8538058, 12110278
Offset: 1

Views

Author

Giovanni Teofilatto, Mar 22 2005

Keywords

Comments

5 is the only odd number of the form prime(n)*prime(n+1) - 1. - Klaus Brockhaus, Mar 29 2005
2*A086870(n) is a subsequence of this sequence. They first differ when 313619 is not in A086870, but 2*313619 = 627238 = a(12). This is because 787 and 797 are the first such pair of consecutive primes that are not twins and (787*797-1)/2 is prime. - Jason Kimberley, Oct 22 2015

Examples

			a(1)=14 because prime(2)*prime(3)- 1=3*5-1=14=2*7;
a(2)=34 because prime(3)*prime(4)- 1=5*7-1=34=2*17;
a(3)=142 because prime(5)*prime(6)-1=11*13-1=142=2*71.
		

Crossrefs

Programs

  • Magma
    [a:n in[2..1000]|IsPrime(a div 2)where a is NthPrime(n)*NthPrime(n+1)-1]; // Jason Kimberley, Oct 22 2015
  • Mathematica
    fQ[n_] := Plus @@ Last /@ FactorInteger[n] == 2; Select[ Prime[ Range[490]]*Prime[ Range[2, 491]] - 1, fQ[ # ] &] (* Robert G. Wilson v, Mar 24 2005 *)
    Select[Times@@#-1&/@Partition[Prime[Range[500]],2,1],EvenQ[#] && PrimeOmega[ #]==2&] (* Harvey P. Dale, Apr 24 2018 *)
  • PARI
    for(n=1,490,if(bigomega(k=prime(n)*prime(n+1)-1)==2,print1(k,","))) \\ Klaus Brockhaus, Mar 24 2005
    

Extensions

More terms from Robert G. Wilson v and Klaus Brockhaus, Mar 24 2005
Showing 1-1 of 1 results.