cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269671 Integers n such that the concatenation of prime(n) and prime(n+1) and also concatenation of prime(n+1) and prime(n) are prime.

Original entry on oeis.org

46, 51, 55, 71, 99, 119, 164, 298, 345, 461, 509, 523, 588, 668, 779, 827, 844, 848, 999, 1100, 1151, 1215, 1306, 1321, 1408, 1553, 1568, 1616, 1779, 1900, 1931, 1953, 2102, 2150, 2221, 2444, 2653, 2677, 3116, 3405, 3527, 3731, 3776, 3890, 3898, 3989, 4070, 4188, 4257, 4546, 4556, 4574, 4681, 4694, 4846, 4947, 4948, 4974
Offset: 1

Views

Author

Zak Seidov, Mar 07 2016

Keywords

Comments

Difference between prime(n) and prime(n+1) is a multiple of 6, otherwise concatenation prime(n)//prime(n+1) is divisible by 3.

Examples

			prime(46)=199, prime(47)=211 and both 199211 and 211199 are prime,
prime(51)=233, prime(51)=239 and both 233239 and 239233 are prime,
prime(9999972)=179424263, prime(9999973)=179424269 and both 179424263179424269 and 179424269179424263 are prime.
		

Crossrefs

Programs

  • Mathematica
    PrimePi/@Select[Partition[Prime[Range[5000]],2,1],AllTrue[{FromDigits[ Join[ IntegerDigits[ #[[1]]],IntegerDigits[#[[2]]]]],FromDigits[ Join[ IntegerDigits[#[[2]]],IntegerDigits[#[[1]]]]]},PrimeQ]&][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 14 2021 *)
  • PARI
    isok(n) = {my(sp = Str(prime(n))); my(sq = Str(prime(n+1))); isprime(eval(concat(sp, sq))) && isprime(eval(concat(sq, sp)));} \\ Michel Marcus, Mar 07 2016