cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269919 Triangle read by rows: T(n,g) is the number of rooted maps with n edges on an orientable surface of genus g.

Original entry on oeis.org

1, 2, 9, 1, 54, 20, 378, 307, 21, 2916, 4280, 966, 24057, 56914, 27954, 1485, 208494, 736568, 650076, 113256, 1876446, 9370183, 13271982, 5008230, 225225, 17399772, 117822512, 248371380, 167808024, 24635754, 165297834, 1469283166, 4366441128
Offset: 0

Views

Author

Gheorghe Coserea, Mar 07 2016

Keywords

Comments

Row n contains floor((n+2)/2) terms.
Equivalently, T(n,g) is the number of rooted bipartite quadrangulations with n faces of an orientable surface of genus g.

Examples

			Triangle starts:
n\g    [0]          [1]          [2]          [3]          [4]
[0]    1;
[1]    2;
[2]    9,           1;
[3]    54,          20;
[4]    378,         307,         21;
[5]    2916,        4280,        966;
[6]    24057,       56914,       27954,       1485;
[7]    208494,      736568,      650076,      113256;
[8]    1876446,     9370183,     13271982,    5008230,     225225;
[9]    17399772,    117822512,   248371380,   167808024,   24635754;
[10]   ...
		

Crossrefs

Same as A238396 except for the zeros.

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, g_] /; g<0 || g>n/2 = 0; T[n_, g_] := T[n, g] = ((4n-2)/ 3 T[n-1, g] + (2n-3)(2n-2)(2n-1)/12 T[n-2, g-1] + 1/2 Sum[(2k-1)(2(n-k)- 1) T[k-1, i] T[n-k-1, g-i], {k, 1, n-1}, {i, 0, g}])/((n+1)/6);
    Table[T[n, g], {n, 0, 10}, {g, 0, n/2}] // Flatten (* Jean-François Alcover, Jul 20 2018 *)
  • PARI
    N = 9; gmax(n) = n\2;
    Q = matrix(N+1, N+1);
    Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
    Qset(n, g, v) = { Q[n+1, g+1] = v };
    Quadric({x=1}) = {
      Qset(0, 0, x);
      for (n = 1, N, for (g = 0, gmax(n),
        my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
           t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
           t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
           (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
        Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
    };
    Quadric();
    concat(vector(N+1, n, vector(1 + gmax(n-1), g, Qget(n-1, g-1))))

Formula

(n+1)/6 * T(n, g) = (4*n-2)/3 * T(n-1, g) + (2*n-3)*(2*n-2)*(2*n-1)/12 * T(n-2, g-1) + 1/2 * Sum_{k=1..n-1} Sum_{i=0..g} (2*k-1) * (2*(n-k)-1) * T(k-1, i) * T(n-k-1, g-i) for all n >= 1 and 0 <= g <= n/2, with the initial conditions T(0,0) = 1 and T(n,g) = 0 for g < 0 or g > n/2.
For column g, as n goes to infinity we have T(n,g) ~ t(g) * n^(5*(g-1)/2) * 12^n, where t(g) = (A269418(g)/A269419(g)) / (2^(g-2) * gamma((5*g-1)/2)) and gamma is the Gamma function.