A270096 Smallest m such that 2^m == 2^n (mod n).
0, 1, 1, 2, 1, 2, 1, 3, 3, 2, 1, 2, 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 4, 5, 2, 9, 4, 1, 2, 1, 5, 3, 2, 11, 6, 1, 2, 3, 4, 1, 6, 1, 4, 9, 2, 1, 4, 7, 10, 3, 4, 1, 18, 15, 5, 3, 2, 1, 4, 1, 2, 3, 6, 5, 6, 1, 4, 3, 10, 1, 6, 1, 2, 15, 4, 17, 6, 1, 4
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
f:= proc(n) local d,b,t, m,c; d:= padic:-ordp(n,2); b:= n/2^d; t:= 2 &^ n mod n; m:= numtheory:-mlog(t,2,b,c); if m < d then m:= m + c*ceil((d-m)/c) fi; m end proc: f(1):= 0: map(f, [$1..1000]; # Robert Israel, Mar 11 2016
-
Mathematica
Table[k = 0; While[PowerMod[2, n, n] != PowerMod[2, k, n], k++]; k, {n, 120}] (* Michael De Vlieger, Mar 15 2016 *)
-
PARI
a(n) = {my(m = 0); while (Mod(2, n)^m != 2^n, m++); m; } \\ Altug Alkan, Sep 23 2016
Formula
a(n) < n/2 for n > 4.
a(2^k) = k for all k >= 0.
a(2*p) = 2 for all primes p.
Extensions
More terms from Michel Marcus, Mar 11 2016
Comments