A290960 Numbers k such that A276976(k) > A270096(k).
8, 32, 56, 64, 96, 128, 144, 155, 170, 176, 192, 196, 204, 215, 221, 224, 238, 248, 255, 256, 272, 288, 320, 322, 336, 341, 352, 368, 372, 374, 384, 432, 448, 465, 476, 496, 510, 512, 527, 544, 574, 576, 608, 612, 623, 635, 640, 644, 645, 658, 663, 672, 682, 697, 704, 714, 731, 736, 744
Offset: 1
Keywords
Examples
8 is a term because A276976(8) = 4 while A270096(8) = 3.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A270096:= proc(n) local d, b, t, m, c; d:= padic:-ordp(n, 2); b:= n/2^d; t:= 2 &^ n mod n; m:= numtheory:-mlog(t, 2, b, c); if m < d then m:= m + c*ceil((d-m)/c) fi; m end proc: A270096(1):= 0: A276976:= proc(n) local lambda; lambda:= numtheory:-lambda(n); if n mod lambda = 0 then lambda elif n mod 8 = 0 and (n-2) mod lambda = 0 then lambda+2 else n mod lambda fi end proc: A276976(1):= 0: A276976(8):= 4: A276976(24):= 4: select(n -> A276976(n) > A270096(n), [$1..1000]); # Robert Israel, Aug 16 2017
-
Mathematica
With[{nn = 750}, Select[Range@ nn, Function[n, SelectFirst[Range[nn/4 + 10], Function[m, AllTrue[Range[2, n - 1], PowerMod[#, m , n] == PowerMod[#, n , n] &]]] > SelectFirst[Range[nn/4 + 10], PowerMod[2, n, n] == PowerMod[2, #, n] &]]]] (* Michael De Vlieger, Aug 15 2017 *)
Comments