cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270203 Primes p such that p+2^4, p+2^6, p+2^8, p+2^10, p+2^12, p+2^14 and p + 2^16 are all primes.

Original entry on oeis.org

163, 15667, 234067, 607093, 671353, 1447153, 1457857, 2162323, 5772097, 7717873, 9139453, 9549373, 11170933, 12039883, 13243063, 16442407, 16836163, 17784253, 18116473, 19433863, 21960577, 28209703, 29175283, 32380177, 33890803, 34613287, 34682113
Offset: 1

Views

Author

Keywords

Examples

			The prime 163 is in the sequence, since 163 + 16 = 179, 163 + 64 = 227, 163 + 256 = 419, 163 + 1024 = 1187, 163 + 4096 = 4259, 163 + 16384 = 16547 and 163 + 65536 = 65699 are all primes.
		

Crossrefs

Subsequence of A269859.

Programs

  • Magma
    [p: p in PrimesInInterval(2,40000000) | forall{i: i in [16,64,256,1024,4096,16384,65536] | IsPrime(p+i)}]; // Vincenzo Librandi, Jul 16 2016
  • Mathematica
    m = {2^4, 2^6, 2^8, 2^10, 2^12, 2^14, 2^16}; Select[Prime@ Range[3*10^6], Times @@ Boole@ PrimeQ[# + m] == 1 &] (* Michael De Vlieger, Jul 13 2016 *)
    Select[Prime[Range[22*10^5]],AllTrue[#+2^Range[4,16,2],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 12 2018 *)
  • Perl
    use ntheory ":all"; say for sieve_prime_cluster(2,1e8, 16,64,256,1024,4096,16384,65536); # Dana Jacobsen, Jul 13 2016